Cahier technique ADIABOX V2 WFP 31 000

SOMMAIRE

1.	CAR	RACTERISTIQUES TECHNIQUES	5
2.	INST	TALLATION DE L'ADIABOX	9
2	2.1.	DÉBALLAGE DU RAFRAÎCHISSEUR	9
2	2.2.	DÉPOSE DES QUATRE ÉCHANGEURS EN CELLULOSE	9
2	2.3.	EMPLACEMENT DU RAFRAÎCHISSER	10
	2.4.	POSE DE LA COSTIERE (POUR ADIABOX V2 WFP 31000 D)	10
	2.5.	EMPLACEMENT RACCORDEMENT EN EAU ET ÉLECTRICITÉ	11
2	2.6.	POSE DU RAFRAÎCHISSEUR	11
3.	RAC	CORDEMENT AERAULIQUE	13
3	3.1.	RACCORDEMENT AERAULIQUE - SOUFFLAGE VERS LE BAS	14
Ī	3.1.1		
	3.1.2		
	3.1.3	3. Assemblage réseau de gaine	
3	3.2.	RACCORDEMENT AERAULIQUE - SOUFFLAGE VERS LE HAUT	
	3.2.1		16
	3.2.2	2. Assemblage réseau de gaine	16
4.	RAC	CORDEMENT ALIMENTATION ET EVACUATION D'EAU	17
5.	RAC	CCORDEMENT ALIMENTATION ELECTRIQUE	22
6	ALIT	OMATE DE RÉGULATION	22
		PRÉSENTATION	
_		LES ATOUTS DE LA SOLUTION GENATIS	
		SCHEMA PRINCIPE DE RACCORDEMENT ADIABOX	
		LISATION DE L'AUTOMATE ET VUE D'ENSEMBLE	
		COFFRET	
		MENUS ET SOUS MENUS	
		RACCORDEMENTS	
	7.4. 7.5.	RACCORDEMENT ADIABOX N°1CARTE D'EXTENSION N°1 – ADIABOX N°2	36
		CARTE D'EXTENSION N°2 – ADIABOX N°3	
		RACCORDEMENT ALIMENTATION ELECTRIQUE	
		ECRAN TACTILE DEPORTE	
'	.o. 7.8.1		
		2 Raccordements	
	7.8.3		
	7.8.4		
7	⁷ .9.	CAPTEUR DE PRESSION MESURANT LE NIVEAU D'EAU DANS LA CUVE	52
	7.9.1	1 Raccordement Adiabox Maitre	52
	7.9.2		
7	⁷ .10.	SONDES DE TEMPERATURE ET DE D'HYGROMETRIE	
	7.10		
	7.10		
7	7.11.	SONDES DE PLUIE	
_	7.11		
7	7.12.	SONDE DE PLUIE ET VENT VIA STATION METEO VENTIBOX	
_		2.1 Raccordement AdiaBox Maitre	
/	7.13. 7.13	COMMANDE MOTEUR VNI EN 230 VAC – 3A MAX	
-	7.13 7.14.	COMMANDE MOTEUR VNI EN 230 VAC – 10A MAX.	
,	7.14. 7.14		
7	7.1 4 7.15.	COMMANDE MOTEUR VNI EN 24 VCC	
,	7.15		
7	7.16.	DESCRIPTION DES POINTS (PHYSIQUES ET PSEUDO)	
	7.17.	PSEUDO ANALOGIQUES (POINTS LOGICIELS)	
		·	

7.1	7.1 Paramètres de gestion de l'eau	58
7.1	7.2 Paramètres de la ventilation	58
7.1	7.3 Consignes d'ambiance	58
7.1		
7.1		
7.18.		
7.18		
7.18		
7.18	8.3 Fonctionnement en cours	60
8. MIS	SE EN SERVICE ET ACCES	61
8.1.	MOT DE PASSE	61
8.2.	DEROGATION LOCALE VNI	
8.2.	.1 Raccordement AdiaBox Maitre	
8.3.	FLASH EPROM	
9. TO	UCHE ALARME	67
9.1.	HISTORIQUE D'ALARMES	69
9.1. 9.2.	POINTS EN MODE MANUEL	
9.3.	POINTS EN ALARME	
9.4.	ALARMES CRITIQUES / NON-CRITIQUES	
10. T	OUCHE D'ACCES AU SYSTEME	71
10.1.	TEMPS DE FONCTIONNEMENT	72
10.2.	SUIVI HISTORIQUE	
10.3.	CONFIGURATION INTERFACE	74
10.4.	PROGRAMME HORAIRE	74
10.5.	POINTS DE DONNEES	
10.6.	DONNEES SYSTEME	80
11. E	NTRETIEN APPAREIL	83
11.1.	PRINCIPE	83
11.2.	PROCEDURE	
	E I – TABLE D'ECHANGES MODBUS	
ANNEX	E II – PARAMATRES MISE EN SERVICE	93
ANNEX	E III – VENTILATEUR PALES ALUMINIUM	94

PRÉCAUTIONS D'UTILISATION

- Ce manuel est valable pour le modèle Adiabox V2 WFP 31 000
- Il est important de lire entièrement ce manuel avant toute installation ou utilisation.
- Placez l'appareil dans un environnement chaud et sec pour une efficacité maximale, le renouvellement d'air (extraction naturelle ou mécanique) de la zone traitée est très important pour éviter une saturation de l'air en humidité.
- Installez l'appareil suffisamment loin de toute extraction d'air vicié, se conformer aux réglementations en vigueur pour déterminer la distance minimale à respecter.
- Structure en matière plastique, éloignez l'appareil de toute source de chaleur.
- La tension d'alimentation doit être respectée : maintenir la tension à ±10V. Une tension trop basse ou trop haute peut endommager l'appareil. Ne pas mettre l'appareil sous tension tant que l'installation n'est pas terminée.

SÉCURITÉ

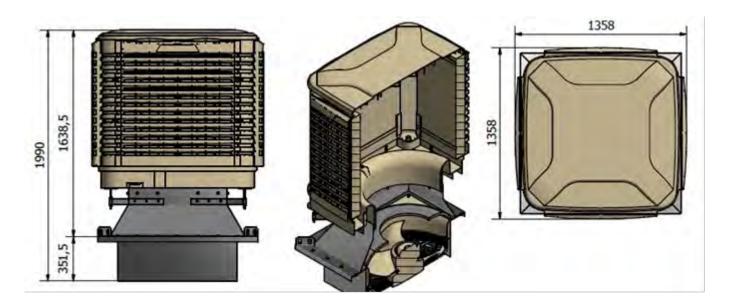
Responsabilité de l'installateur :

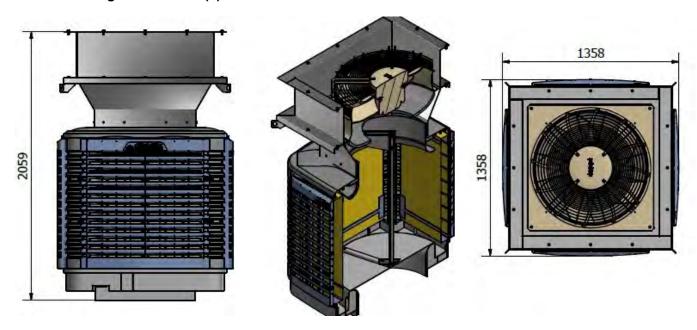
L'installation et la maintenance des rafraîchisseurs d'air nécessitent un savoir-faire et des compétences particulières : électricité, couverture, étanchéité, travail en hauteur... Le respect des habilitations réglementaires spécifiques, normes de sécurité et d'installation incombe à l'installateur. Le port d'EPI conformes et en adéquation aux risques est obligatoire (gants anti-coupures, lunettes, chaussures de sécurité ...) .

Exigences importantes et contre-indications d'emploi liées à l'Adiabox :

- Ne jamais forcer les pièces pour les assembler. Celles-ci sont conçues pour s'assembler facilement sans force excessive.
- Ne jamais percer de trou dans la surface primaire, ni sur les parois du réservoir de l'appareil.
- Vérifiez que l'emplacement prévu est structurellement capable de supporter le poids du rafraîchisseur, sinon prévoir une structure portante alternative adéquate.

Règles générales de sécurité, quelques points à considérer avant de démarrer l'installation :

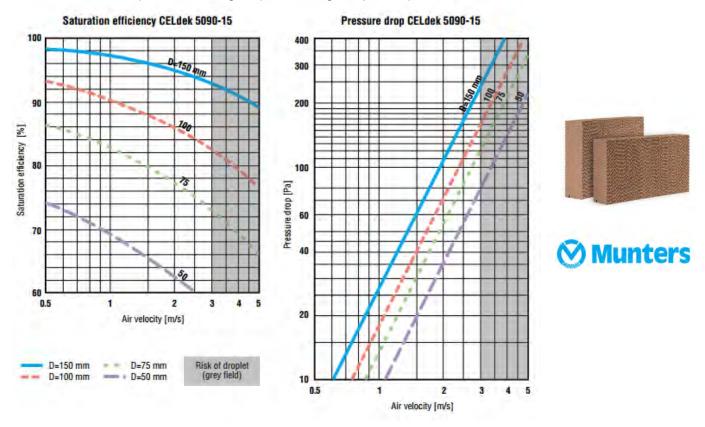

- Quel est l'accès le plus sûr à la zone de travail (toiture, façade...) ?
- Quel est l'état de la toiture ? Faudra-t-il inspecter les fermes, le dessous ou la surface ?
- Si un ouvrier travaille seul, qui en est averti, et en cas de problème comment pourra-t-il appeler à l'aide (téléphone portable, talkie-walkie ...) ?
- L'ouvrier porte-t-il des chaussures adaptées et disposent-ils des EPI nécessaires à son intervention ?
- Les câbles électriques sont-ils sûrs et de section adéquate ?
- Les composants assurant la protection électrique de l'installation sont-ils sûrs et de puissance adéquate ?
- Les échelles, les outils et le matériel sont-ils appropriés et en bon état ?
- S'il faut utiliser des échelles, dispose-t-on d'une base stable et ferme pour les poser ? Peuvent-elles être attachées ou fixées solidement ? Le haut de l'échelle est-il dégagé d'obstacles ?
- La toiture comporte-t-elle un ancrage auquel une corde de manœuvre ou un harnais pourrait être attaché ? Si oui, il faudra donner des instructions sur l'utilisation d'un harnais approuvé ou confié le travail à des ouvriers ayant suivi une formation spécifique.
- Si le site est considéré comme dangereux : demander au client de faire intervenir une entreprise spécialisée dans la pose de ligne de vie pour sécuriser le site au moment de l'installation et de la maintenance ?


1. CARACTERISTIQUES TECHNIQUES

Dimensions extérieures (L x P x H) :

- Soufflage vers le bas (D): 1358 x 1358 x 1 990 mm
 - o La partie moteur (hauteur 351,5 mm) est placée à l'intérieur de la costière d'étanchéité. La partie de l'adiabox au-dessus de la costière d'étanchéité est donc de 1638,5 mm.

Soufflage vers le haut (T): 1358 x 1358 x 2059 mm


Poids: Poids à vide = 182 kg; Poids en charge = 240 kg

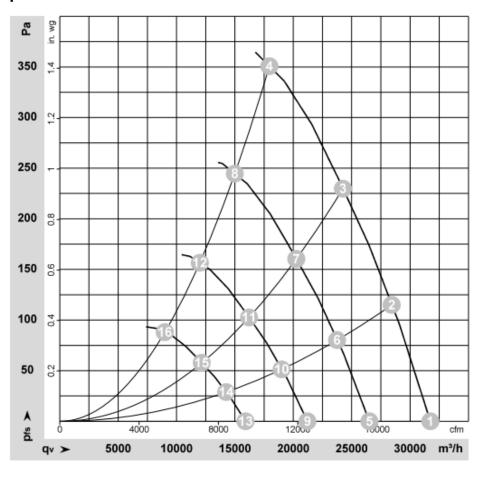
Structure : Polypropylène injecté traité contre les ultraviolets

Échangeurs:

- 4 Échangeurs nid d'abeilles en cellulose de marque Munters Celdek® 5090 :
 - Épaisseur = 100 mm
 - o Efficacité minimum = 85 %
- Caractéristiques de l'échangeur (courbe rouge en pointillé) :

Raccordement en eau:

- Electrovanne d'alimentation d'eau : 1/2" mâle PE ou Cuivre
- Electrovanne de vidange : 1" mâle PE ou Cuivre (raccordement facultatif)


Raccordement électrique :

- Câble 5G2,5 mm² 400 Vac 50/60 Hz
- Section minimale conseillée, à valider en fonction de la longueur des câbles

Puissance absorbée: 3800 W

Caractéristiques du ventilateur : débit d'air à 50 Hz

Point	q _v	P _{fs}	n	P _{ed}	I	LpA _{in}	LwA _{in}	LwA _{out}
courbe	m³/h	Pa	min ⁻¹	W	A	dB(A)	dB(A)	dB(A)
1	31740	0	1190	2377	3,68	75	82	85
2	28425	115	1190	2825	4,34	73	81	83
3	24250	230	1190	3160	4,85	76	83	83
4	17955	350	1190	3500	5,30	86	93	94
5	26515	0	1000	1386	2,15	70	78	80
6	23750	81	1000	1647	2,53	69	76	78
7	20260	161	1000	1843	2,83	71	78	79
8	14990	245	1000	1979	3,02	81	89	89
9	21215	0	800	710	1,10	65	72	75
10	19000	52	800	843	1,30	63	71	72
11	16210	103	800	943	1,45	66	73	73
12	11995	157	800	1013	1,55	76	83	84
13	15910	0	600	299	0,46	57	65	67
14	14250	29	600	356	0,55	56	63	65
15	12155	58	600	398	0,61	58	66	66
16	8995	88	600	427	0,65	68	76	76

qv: Débit (m³/h)

I: Absorption du courant (A)

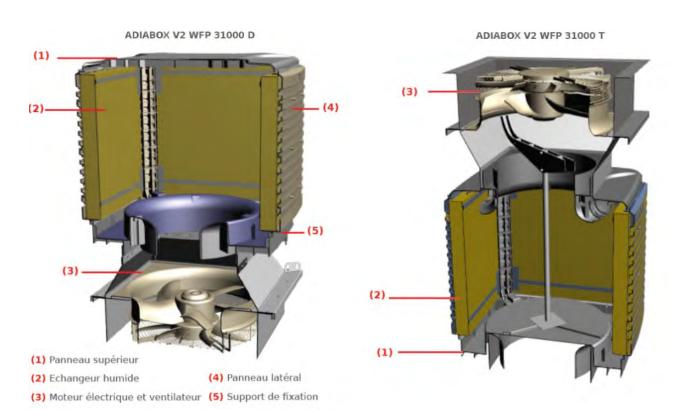
Pfs: Pression disponible (Pa) n: vitesse de rotation (trs/m)

LpAin : Niveau de pression acoustique coté aspiration à 1 m du ventilateur (dB)

Ped : Puissance absorbée (W) LwAou

LwAin: Niveau de puissance acoustique coté aspiration (dB) LwAout: Niveau de puissance acoustique coté pression (dB)

Option : possibilité de fourniture d'un ventilateur avec pales en aluminium selon annexe III.



Température de soufflage Efficacité d'échangeur : 85%

	TEMPÉRATURE AIR à l'entrée de l'ADIABOX V2® (°C)				* (°C)	
	20	25	30	35	40	45
HR EXT.		TEMPÉRA	TURE AIR	au SOUFFI	LAGE (°C)	
10 %	9,3	12,4	15,6	18,6	21,6	24,7
20 %	10,7	14,3	17,8	21,2	24,7	28,3
30 %	12,1	15,9	19,7	23,5	27,4	31,4
40 %	13,5	17,4	21,5	25,7	29,8	34,0
50 %	14,6	19,0	23,2	27,5	31,9	36,4
60 %	15,8	20,2	24,7	29,3	33,9	38,5
70 %	16,9	21,5	26,2	30,8	35,6	40,3
80 %	18,0	22,7	27,5	32,3	37,2	41,9

HR : humidité relative

ADIABOX V2 WFP 31 000:

2. INSTALLATION **DE L'AD**IABOX

2.1. DÉBALLAGE DU RAFRAÎCHISSEUR

- NE PAS SUPERPOSER LES APPAREILS.
- L'appareil est livré sur une palette.
- Enlevez le cerclage et le carton.
- Avec un système de levage mécanique et des sangles adaptées au poids de l'appareil, soulevez et déplacez soigneusement le rafraîchisseur d'air, en vous aidant des 4 anneaux de levage de chaque côté de l'appareil (Figure 1).

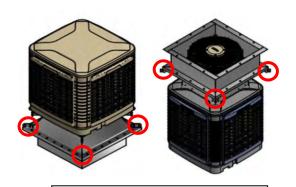


Figure 1 : Anneaux de levage

2.2. DÉPOSE DES QUATRE ÉCHANGEURS EN CELLULOSE

- Retirez les 4 clips assurant le maintien des panneaux latéraux (Figure 2).
- Tirez le panneau vers le haut, puis tirez-le vers vous (Figure 3).
- Une fois le haut du panneau sorti, l'ensemble peut être retiré sans difficulté (Figure 4).

Ne jamais poser le pied dans l'appareil pour tenter de pénétrer dans le module adiabatique.

ATTENTION À NE PAS ENDOMMAGER LE HAUT DES ÉCHANGEURS EN CELLULOSE.

Figure 2 : Clips

Figure 3 : Ouverture du panneau

Figure 4 : Panneau avec échangeur

2.3. EMPLACEMENT DU RAFRAÎCHISSER

Il est préférable d'installer le rafraîchisseur au plus près de la zone à traiter, afin de ne pas diminuer son efficacité de fonctionnement.

Prévoyez les alimentations en eau et électricité des rafraîchisseurs. Elles doivent être disponible à côté de chaque module en début d'installation :

- Alimentation d'eau : raccord en eau (1/2")
- Alimentation d'électricité : 400Vac triphasé , câble 5G (section et protection selon NF C15-100)
- Vidange d'eau (facultative) : raccord en eau (DN32)

Vérifiez que l'emplacement prévu est capable de supporter le poids du rafraîchisseur, sinon prévoyez une structure adéquate.

Situez toujours l'appareil à l'endroit où il disposera d'une grande quantité d'air frais et sain et pas dans un environnement poussiéreux et pollué.

Dans le cas d'une installation en toiture, l'Adiabox doit être installée sur une toiture incluant un parafoudre.

Veillez à ce que l'Adiabox soit à une distance suffisante de toute évacuation d'air (cheminée d'un appareil de chauffage, extraction d'air ...).

Prévoyez une zone suffisante pour la maintenance, au moins 60 cm autour de l'appareil avec un accès aux commandes et à l'écran de l'automate de régulation.

Considérez le niveau sonore de l'appareil et sa compatibilité avec les bâtiments avoisinants dans les zones sensibles au bruit.

Il existe plusieurs moyens de diminuer les contraintes sonores de l'installation :

- prévoyez l'intégration d'un piège à sons
- équipez les parois internes des gaines d'atténuateurs acoustiques
- augmentez la section des gaines de diffusion
- équipez le ventilateur d'une grille d'atténuation acoustique (réf : ADIAOPN0013)

2.4. POSE DE LA COSTIERE (POUR ADIABOX V2 WFP 31000 D)

La pose et l'étanchéité de la costière nécessitent un savoir-faire approprié, si l'installateur ne possède pas ce savoir-faire il est conseillé de faire appel à une entreprise de couverture et d'étanchéité.

Le plus souvent, le passage des réseaux de gaine en toiture se fait par l'intermédiaire d'une costière plate ou biaise (Figure 5 et 6), en fonction de la toiture du bâtiment.

Le poids de l'Adiabox et de la costière doit reposer sur les poutres ou solives du bâtiment par l'intermédiaire de chevêtres.

L'installateur doit s'assurer que l'étanchéité de la costière et du réseau de gaine sont conformes aux normes en vigueur.

Figure 5 : Costière à plat

Figure 6 : Costière biaise

2.5. EMPLACEMENT RACCORDEMENT EN EAU ET ÉLECTRICITÉ

Les alimentations d'eau et d'électricité doivent être disponible à proximité du rafraîchisseur.

Si l'appareil est installé en toiture, il est conseillé de passer le réseau d'eau, d'électricité et de commande par l'intermédiaire d'une crosse (Figure 8).

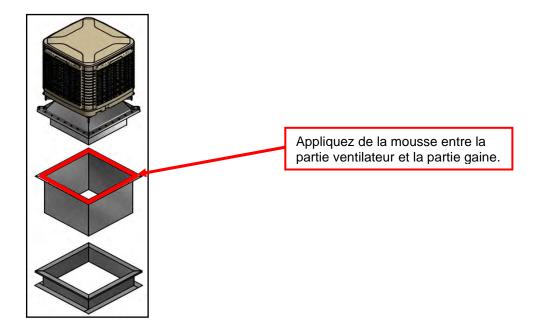
Il est déconseillé d'utiliser le réseau de gaine aéraulique pour acheminer les câbles d'alimentation jusqu'aux Adiabox, cela augmente le risque de problèmes d'étanchéité et de bruit parasite. Les alimentations risquent de taper contre le réseau de gaine à cause de la vitesse de l'air.

L'installateur doit s'assurer que l'étanchéité de la crosse est conforme aux normes en vigueur.

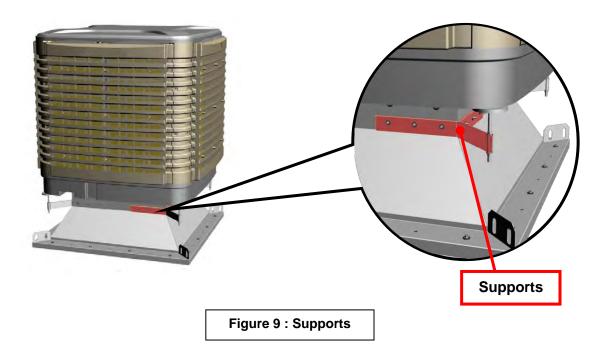
Figure 7 : Crosse d'alimentation eau/électricité

2.6. POSE DU RAFRAÎCHISSEUR

Veillez à laisser un espace suffisant en dessous de l'appareil afin d'avoir un accès aux raccordements hydrauliques et électriques.


Avant de fixer le rafraîchisseur, vérifiez à l'aide d'un niveau, que l'appareil soit parfaitement horizontal.

Dans le cas d'une installation sur une toiture en pente : l'évacuation des eaux de l'Adiabox doit être positionnée vers le bas de la toiture et l'arrivée d'eau vers le haut de la toiture.


Figure 8 : Positionnement de l'Adiabox

Dans le cas d'une Adiabox V2 WFP 31 000 D (soufflage vers le bas) :

- La mise en place de ces supports est impérative, ils garantissent la durabilité de l'Adiabox dans le temps.
- Assurez-vous que l'Adiabox soit parfaitement de niveau.
- L'Adiabox doit être installée sur une toiture incluant un parafoudre.

Remarque : Dans le cas d'un appareil Adiabox V2 WFP 31 0000 T (soufflage vers le haut), il n'y a pas de supports.

3. RACCORDEMENT AERAULIQUE

Afin de limiter les pertes de charge et les nuisances sonores, il est impératif d'installer des gaines d'un diamètre minimal de 950 mm pour les locaux industriels et 1050 mm pour les locaux plus sensibles au bruit (évènementiel, salle de spectacle, bureaux...etc.). Les installations destinées aux locaux sensibles doivent être également être équipées d'atténuateurs acoustiques selon le besoin du client.

L'isolation de la gaine est facultative. A étudier en fonction des contraintes sonores.

L'Adiabox V2 WFP 31000 possède deux types de raccordement aéraulique :

- Soufflage vers le bas (ADIABOX V2 WFP 31 000 D),
- Soufflage vers le haut (ADIABOX V2 WFP 31 000 T),

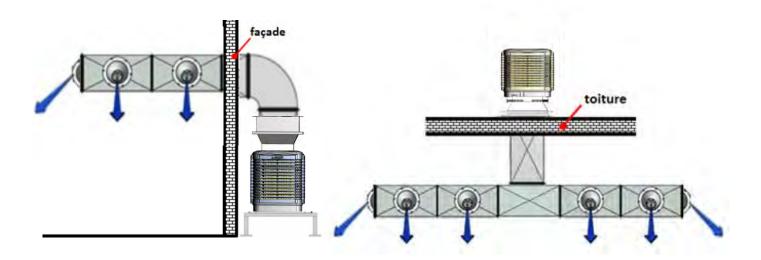
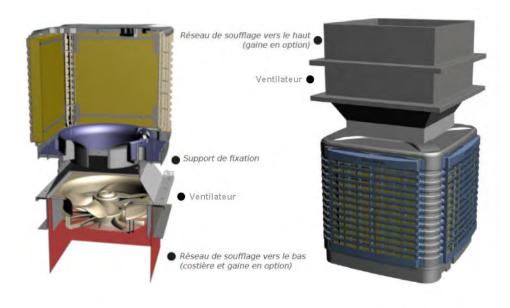
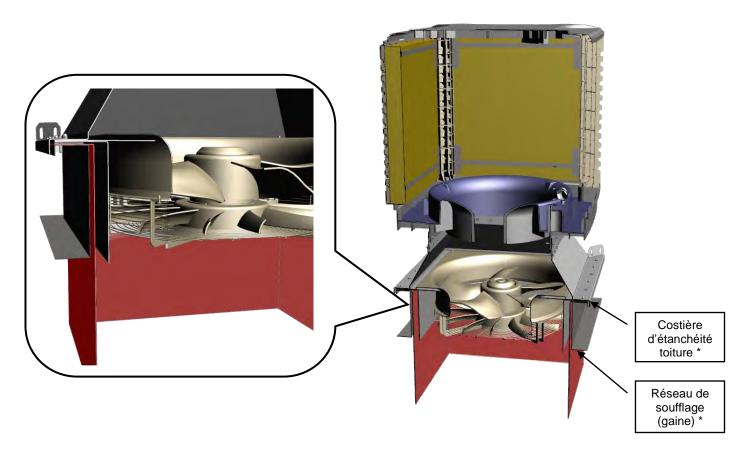
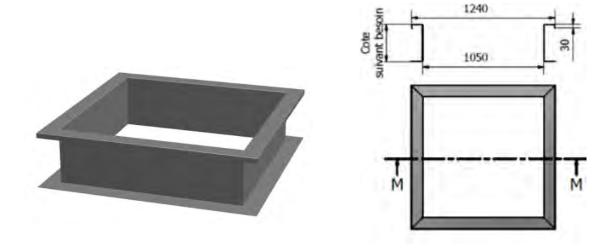



Figure 10 : Exemples de raccordement aéraulique



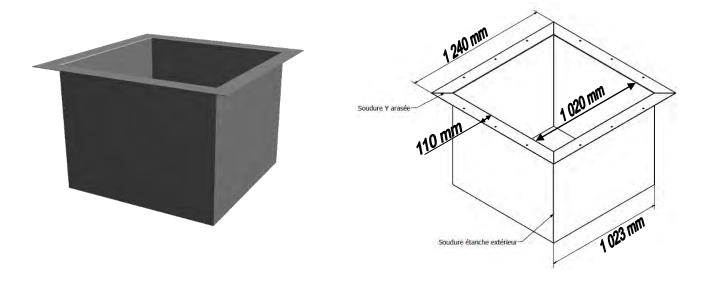
ADIABOX V2 WFP 31000 D

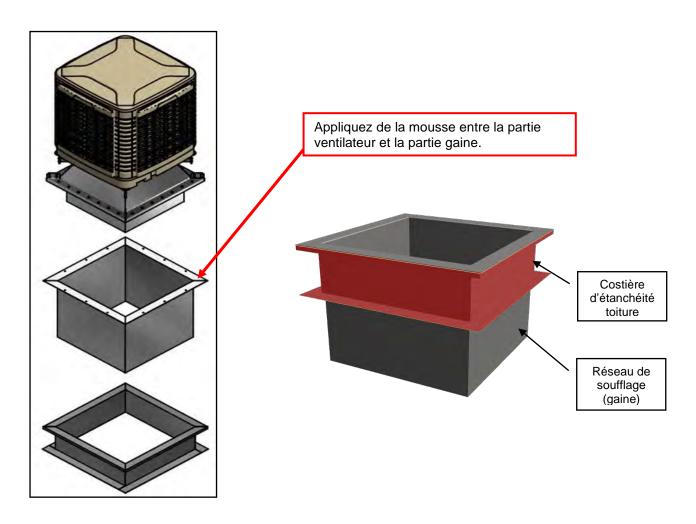
ADIABOX V2 WFP 31000 T


3.1. RACCORDEMENT AERAULIQUE - SOUFFLAGE VERS LE BAS

^{*} La costière d'étanchéité de toiture et la gaine de soufflage ne sont pas fournis avec l'appareil (en option)

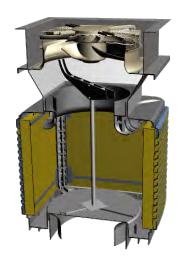
3.1.1. Costière d'étanchéité de toiture


Exemple de pièce d'adaptation costière toiture :

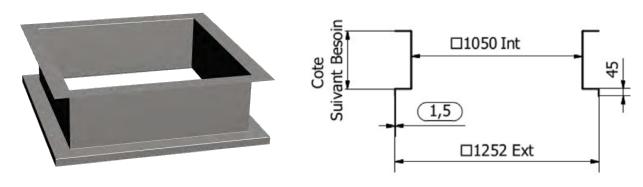


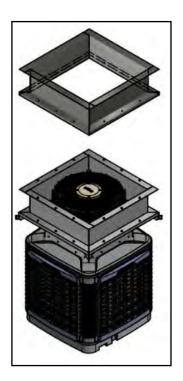
3.1.2. Conduit de gaine

Après la pose de la costière d'étanchéité sur la toiture, nous insérons, par l'extérieur du bâtiment, le conduit de gaine.



3.1.3. Assemblage réseau de gaine




3.2. RACCORDEMENT AERAULIQUE - SOUFFLAGE VERS LE HAUT

3.2.1. Conduit de gaine

3.2.2. Assemblage réseau de gaine

4. RACCORDEMENT ALIMENTATION ET EVACUATION D'EAU

Tous les raccordements s'effectuent par le dessous de l'appareil (Figure 13) :

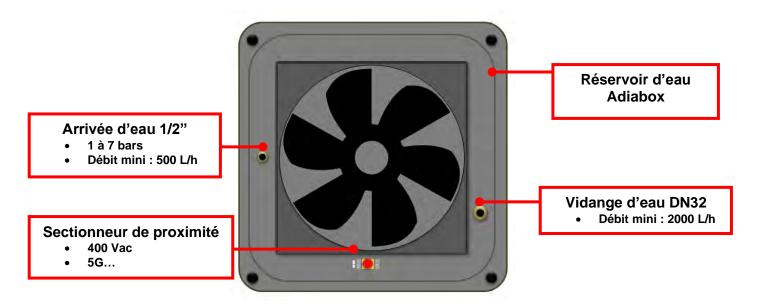


Figure 13 : Schéma vue de dessous - Adiabox V2 WFP 31000 D (soufflage vers le bas)

Exigences en matière d'eau :

- L'alimentation en eau du rafraîchisseur doit être installée conformément aux normes et aux règlements en vigueur.
- Le rafraîchisseur doit être raccordé à de l'eau de bonne qualité pour garantir un fonctionnement efficace : eau de ville, eau adoucie
- Si l'eau utilisée provient de forage ou de récupération d'eau de pluie, ce système doit être étudié de manière approfondie avec une société spécialisée et filtrée conformément aux normes en vigueur.
- L'eau de vidange doit être évacuée vers un point de décharge approprié sur le bâtiment ou sur le terrain selon les normes. Si cette eau de vidange est évacuée dans le réseau d'eau pluviale, elle ne doit pas contenir de composants chimiques ajoutés : se reporter alors aux normes en vigueur.

Caractéristiques d'alimentation d'eau :

Raccordement d'eau: 1/2"

Alimentation d'eau:

- Pression comprise entre 1 et 7 Bar
- Débit disponible 500 l/h
- Si la pression de l'eau dépasse 7 bars, il est nécessaire de prévoir une vanne de détente qui doit être fournie et posée par l'installateur.
- Si la pression de l'eau est inférieure à 1 bar, il est nécessaire de prévoir une pompe qui doit être fournie et posée par l'installateur.

Dans les régions où il existe un risque de gel, la canalisation d'alimentation doit être munie d'un dispositif de purge.

Prenez le flexible livré dans l'Adiabox (Figure 14) et enlevez le collier en plastique qui maintient le flexible. Vissez l'écrou libre du flexible au raccord mâle 1/2" de l'arrivée d'eau (situé sous l'appareil). Aucun joint n'est nécessaire, celui-ci est intégré au flexible.

Le raccord 1/2" de la vanne d'arrivée d'eau est en plastique, attention à ne pas serrer l'écrou libre du flexible trop fort.

Prévoir à la charge de l'installateur une vanne en amont de l'Adiabox, elle permet de couper l'alimentation d'eau lors de la maintenance.

Figure 14 : Flexible d'arrivée d'eau

Si les canalisations d'arrivée d'eau sont en cuivre Ø15 :

- Dévissez l'écrou du raccord olive, l'introduire autour du tuyau en cuivre
- Faites un collet battu
- Remettez la bague en laiton dans l'écrou (Figure 15)
- Revissez l'écrou, la bague en laiton va s'aplatir et faire office de joint
- Si les canalisations d'arrivée d'eau sont en Ø16, il faudra changer l'écrou et la bague en laiton

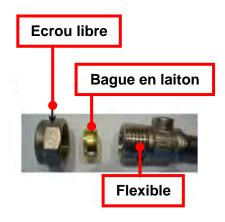


Figure 15 : Raccordement cuivre arrivée d'eau

Si les canalisations d'arrivée d'eau sont en PE Ø16 :

- Retirez l'écrou et la bague en laiton du raccord olive du flexible
- Remplacez-le par un raccord grippe 1/2" Ø16
- Introduisez l'écrou libre autour du PE Ø 16
- Insérez la bague au raz du PE
- Vissez le joint d'étanchéité en bout de PE (Figure 16)
- Serrez l'écrou libre au flexible livré avec l'Adiabox

Figure 16 : Raccordement PE arrivée d'eau

<u>Important</u>: Rincez tous les copeaux et impuretés présents dans les canalisations d'eau avant la pose finale. Ils peuvent se loger dans l'électrovanne d'arrivée d'eau et nuire à son fonctionnement.

Nettoyez le filtre à cartouche de l'électrovanne d'arrivée d'eau (Figure 17).

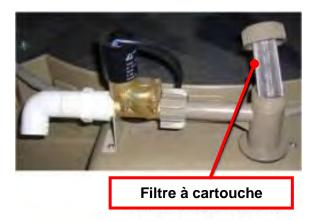


Figure 17 : Filtre à cartouche

Caractéristiques de vidange de l'eau :

Débit de vidange de l'eau : 2000 l/h

L'électrovanne de vidange est démontée, afin d'éviter sa détérioration pendant le transport

- Prenez l'électrovanne de vidange située dans l'Adiabox (il faut enlever le collier en plastique qui maintient la vanne)
- Enlevez l'écrou en laiton et le joint noir (Figure 18)
- Introduisez l'électrovanne vidange son emplacement
- L'électrovanne de vidange a un sens. Présentez le côté plat de l'électrovanne de vidange en face du côté plat du trou d'évacuation d'eau au fond du bac (Figure 29).
- Une fois l'électrovanne en place, mettez le joint noir en dessous de l'appareil, et serrer l'écrou. Le joint d'étanchéité noir doit être positionné à l'extérieur et le joint blanc à l'intérieur de l'appareil.

Le raccord 1" de l'électrovanne de vidange est en plastique, ne pas serrer l'écrou trop fort.

Si nécessaire, des canalisations d'évacuation d'eau peuvent être installées et raccordées directement sur le filetage 1" de la vanne de vidange.

Si l'appareil est situé à un point bas, une pompe de relevage peut être rajoutée et commandée par l'Adiabox.

Pour éviter tout risque de salissure, nous déconseillons la vidange de l'eau directement sur la toiture, ou sous l'appareil. Un raccordement de l'électrovanne de vidange à une canalisation d'évacuation des eaux pluviales est préférable.

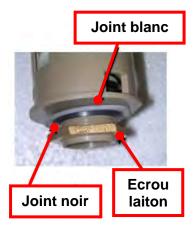
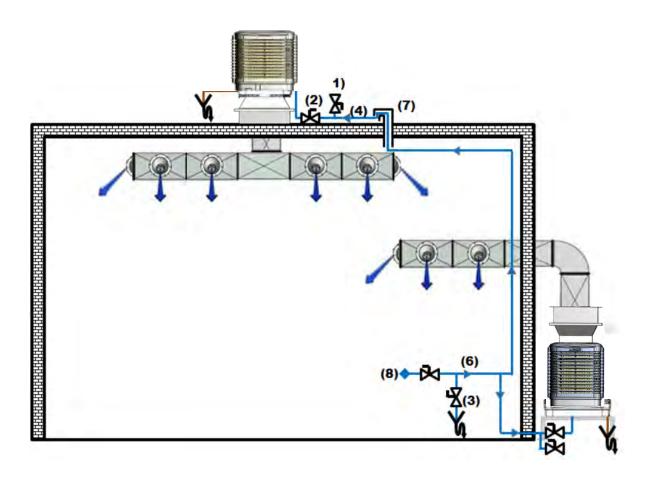



Figure 18 : Electrovanne de vidange

Figure 19 : Sens électrovanne de vidange

- Réseau d'alimentation d'eau
- Réseau d'évacuation d'eau de vidange (facultatif selon chantier)
- (1) Vanne de réserve permettant le raccordement d'un jet d'eau pour l'entretien du rafraîchisseur
- (2) Vanne permettant l'isolement de chaque rafraîchisseur
- (3) Vanne de purge au point bas de l'installation
- (4) Diamètre de raccordement d'arrivée d'eau pour chaque unité : 1/2"
- (5) Diamètre de raccordement d'évacuation d'eau pour chaque unité : DN32
- (6) Diamètre de la canalisation principale à déterminer en fonction du nombre d'unité à alimenter
- (7) Crosse d'alimentation toiture
- (8) Piquage sur réseau d'eau de ville existant

Figure 20 : Exemple de raccordement du réseau d'alimentation et vidange d'eau aux rafraîchisseurs

Le circuit d'alimentation d'eau des Adiabox doit être monté en parallèle et non en série.

5. RACCORDEMENT ALIMENTATION ELECTRIQUE

TOUTES LES INTERVENTIONS ÉLECTRIQUES DOIVENT ÊTRE RÉALISÉES HORS TENSION.

Exigences en matière d'électricité :

- L'installation du rafraîchisseur d'air doit être conforme aux normes et règlements en vigueur.
- Tous les rafraîchisseurs doivent être câblés et protégés aux armoires électriques de distribution au moyen de lignes spécialisées aux normes.
- Le dimensionnement des appareils de protection est à définir par les installateurs.

<u>Avertissement</u>: Prendre garde au pouvoir de coupure des armoires électriques existantes, le client peut imposer de protéger les Adiabox avec des disjoncteurs ayant le même pouvoir de coupure.

Puissance:

- Alimentation électrique : 400Vac 50/60 Hz triphasé
- Puissance nominale : 3800 W
- Protection thermique du ventilateur : réarmement automatique
- Sectionneur de proximité situé sous l'Adiabox (Figure 21)

Commande :

- Liaison entre Adiabox et commande murale : Câble 4 paires blindé par paires.
- Tension de commande : 24 Vcc

Alimentation électrique :

- La section des câbles doit être dimensionnée par l'installateur, toutefois nous conseillons d'utiliser un câble d'alimentation 5G 2,5 mm² par Adiabox sur une distance de 100 m maximum.
- Le câble d'alimentation électrique doit être protégé en amont au niveau de l'armoire électrique générale.

Le raccordement électrique de l'Adiabox se fait au niveau du sectionneur de proximité situé sous l'appareil (Figure 21).

Retirez les deux vis de fixation du sectionneur (Figure 22).

Passez le câble d'alimentation électrique dans les 2 presse-étoupes situés sous l'Adiabox (Figure 23).

Dénudez le câble et l'équiper d'embouts de câblage.

Connections:

- Reliez vos câbles (phases et neutre) sur les bornes du sectionneur.
- Le PE sur la borne située en face de la prise de terre déjà câblée dans le sectionneur.
- Revissez les deux vis de fixation du sectionneur.

Figure 21 : Emplacement sectionneur

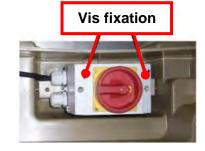


Figure 22 : Vis de fixation sectionneur

Presse-étoupes

Figure 23 : Presse-étoupes

Important : Laissez le sectionneur sur la position OFF tant que l'installation de l'Adiabox n'est pas terminée.

6. AUTOMATE DE RÉGULATION

6.1. PRÉSENTATION

La gestion de la facture énergétique des bâtiments et l'augmentation du confort des personnes sont une préoccupation quotidienne pour tous les acteurs du bâtiment.

Entre Génie climatique et Désenfumage naturel, une synergie évidente permet d'utiliser les Dispositifs d'Evacuation Naturelle de Fumées et de Chaleur (DENFC) installés, afin de réaliser une ventilation naturelle dans tous types de bâtiments.

Que ce soit pour des Etablissements Recevant du Public - ERP, des Etablissements Scolaires, des aéroports, des gares, des Centres Commerciaux, des immeubles tertiaires ou encore des bâtiments industriels, SOUCHIER, spécialiste des systèmes de désenfumage et de ventilation naturelle, propose des solutions qui répondent aux nouvelles orientations environnementales en faveur des économies d'énergie.

GENATIS propose une solution globale de gestion de la ventilation naturelle, entièrement automatisée, en optimisant la gestion énergétique des bâtiments et le confort des occupants, en prenant en compte les éléments suivants :

- Température extérieure,
- Température intérieure de la zone,
- Point de consigne ambiant,
- Présence de pluie et/ou de vent,

6.2. LES ATOUTS DE LA SOLUTION GENATIS

- Augmentation de la performance de la fonction ventilation naturelle en utilisant le matériel de désenfumage existant (DENFC), en plus du matériel d'aération éventuel,
- Responsabilité unique Pas de risque lié aux limites de prestation de deux lots différents
 - En effet, la partie de désenfumage naturel est soumis à des normes en matière de pose (APSAD) ainsi qu'au niveau des produits (Coffret de désenfumage certifié NF). La prestation GENATIS vous donnera l'assurance d'une intégration complète
- Réduction des coûts d'installation
 - Limitation du nombre de câble électrique par la localisation de l'automate de ventilation naturelle à proximité des coffrets de désenfumage
- Réduction du temps de mise en service
 - o Mise en service de la fonction ventilation naturelle en même temps que le désenfumage.
- Autonomie de fonctionnement de la fonction ventilation naturelle en cas de défaillance de l'automate du lot clim / GTC
- Possibilité d'interaction avec le lot GTC via des contacts secs ou via le bus de communication,
- Possibilité de report d'informations sur une GTC existante via une communication BUS en protocole de communication standard natif ModBus
- Ouverture des ouvrants de façade et des exutoires à des positions intermédiaires, en mode ventilation naturelle, avec l'association d'un coffret de désenfumage de type SADAP
- Ouverture en aération des ouvrants de façade et des exutoires sur une position limitée et paramétrable

Fonctionnement de la purge nocturne

Demande d'ouverture des ouvrants de façade et des exutoires de la zone concernée, à une valeur prédéfinie et paramétrable (50 % par défaut) dans le cas, où les conditions suivantes sont réalisées simultanément :

- Température ambiante supérieure à une limite basse prédéfinie,
- Température extérieure inférieure ou égale à la Température ambiante,
- Pas de présence de pluie et/ou de vent,

Demande de fermeture des ouvrants de façade et des exutoires de la zone concernée, dans le cas, où une de ces conditions suivantes est réalisée :

- Température ambiante inférieure ou égale à la limite basse prédéfinie,
- Température extérieure supérieure à la température ambiante,
- Présence de pluie et/ou de vent,

Fonctionnement du free-cooling

L'autorisation de fonctionnement du free-cooling est asservie à :

- Une période annuelle définissant les jours de fonctionnement (1 mai au 15 octobre par défaut),
- Un programme horaire hebdomadaire définissant les plages horaires d'occupation des locaux,
- Présence éventuelle de pluie et/ou de vent,
- Un paramètre d'autorisation logiciel (oui / non),
- Une information externe à l'automate de ventilation naturelle via une entrée physique de type « contact sec », pour l'ensemble des zones gérées par l'automate :
 - Contact fermé : Autorisation externe
 - Contact Ouvert : Pas d'autorisation

Demande d'ouverture des ouvrants de façade et des exutoires de la zone concernée, à une valeur prédéfinie et paramétrable (100 % par défaut) dans le cas, où les conditions suivantes sont réalisées simultanément :

- Température ambiante supérieure au point de consigne d'ambiance (23°c par défaut),
- Température extérieure inférieure ou égale à la Température ambiante + 2 °C,

Fonctionnement du free-heating

Le Free-heating, est utilisé dans le cas de façade bioclimatique, afin d'utiliser l'air chaud de la double peau, en hiver, et de réchauffer l'air ambiant des locaux

L'autorisation de fonctionnement du free-heating est asservie à :

- Une période annuelle définissant les jours de fonctionnement (15 octobre au 1mai par défaut),
- Un programme horaire hebdomadaire définissant les plages horaires d'occupation des locaux,
- Présence éventuelle de pluie et/ou de vent,
- Un paramètre d'autorisation logiciel (oui / non),
- Une information externe à l'automate de ventilation naturelle via une entrée physique de type « contact sec », pour l'ensemble des zones gérées par l'automate :
 - o Contact fermé: Autorisation externe
 - o Contact Ouvert : Pas d'autorisation

Demande d'ouverture des ouvrants de façade et des exutoires de la zone concernée, à une valeur prédéfinie et paramétrable (20 % par défaut) dans le cas, où les conditions suivantes sont réalisées simultanément :

- Température ambiante inférieure au point de consigne d'ambiance (23°c par défaut),
- Température extérieure supérieure ou égale à la Température ambiante + 2 °C,
- Température ambiance supérieure à limite basse de la température ambiante (20°C par défaut)

6.3. SCHEMA PRINCIPE DE RACCORDEMENT ADIABOX

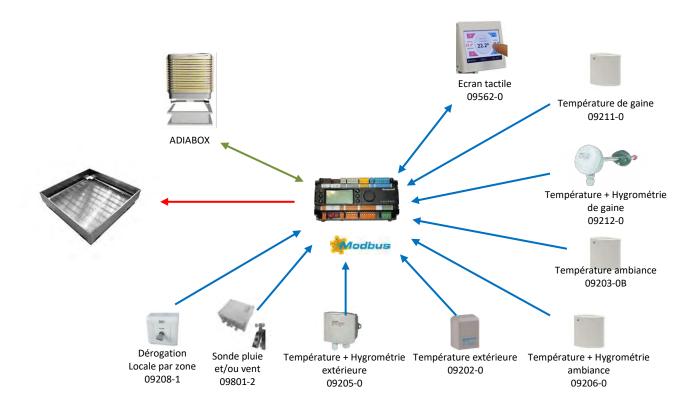
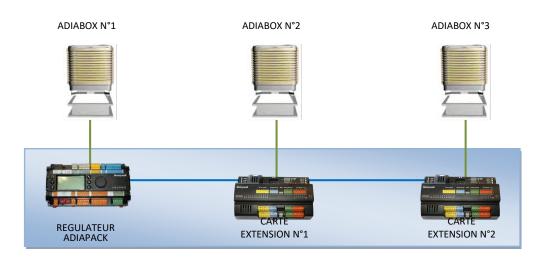



Figure 25 : Schéma de communication automate et asservissement

Le système est livré d'usine pour fonctionner avec un débit maximal de 16000m³/h. Pour fonctionner avec un débit maximal de 31000m³/h, il faut réaliser un shunt sur le régulateur entre les bornes appropriées (voir chapitre raccordement).

Mode manuel général - ventilation naturelle

Un commutateur AUTOMATIQUE / FERMETURE MANUELLE / OUVERTURE MANUELLE, permettra l'ouverture ou la fermeture manuelle de l'ensemble des ouvrants des zones.

Sur le changement d'état du commutateur AUTO / MANU, le système effectuera une fermeture complète des ouvrants.

Mode manuel local - ventilation naturelle

Un bouton poussoir permettra une dérogation locale, avec l'information de l'état via un signal sous forme de voyant.

Sur l'action d'une impulsion de ce bouton de dérogation locale, la position demandée sera active pendant une période prédéfinie paramétrable (60 mn par défaut).

1ère impulsion : Ouverture à la position maximale de dérogation,

2ème impulsion : Fermeture en Mode Manuel, **3**ème impulsion : Passage en mode Automatique

A la fin de la période de dérogation locale, les ouvrants reprendront la position initiale de free-cooling ou la fermeture complète si le free-cooling n'est pas actif.

Asservissement demande fermeture par GTC

Sur détection de l'information de demande de fermeture (via le contact externe à l'automate), l'automate gère, pour l'ensemble des zones de ventilation naturelle :

- Alarme « demande fermeture GTC »
- Fermeture impérative des ouvrants.

Asservissement demande ouverture par GTC

Sur détection de l'information de demande d'ouverture (via le contact externe à l'automate), l'automate gère, pour l'ensemble des zones de ventilation naturelle :

- Alarme « demande ouverture GTC »
- Ouverture impérative des ouvrants.

Si Paramètre de prise en compte du programme horaire d'occupation des locaux (Free Cooling) = OUI (valeur par défaut)

- Une alarme « demande ouverture GTC »
- Ouverture impérative des ouvrants, sur les quatre conditions simultanées :
 - o Plage horaire de fonctionnement Free Cooling
 - o Période annuelle de fonctionnement
 - Demande d'ouverture externe (contact fermé)
 - o Pas de présence de Pluie et/ou Vent

Si Paramètre de prise en compte du programme horaire d'occupation des locaux (Free Cooling) = NON

- Une alarme « demande ouverture GTC »
- Ouverture impérative des ouvrants, sur les trois conditions simultanées :
 - Période annuelle de fonctionnement
 - Demande d'ouverture externe (contact fermé)
 - Pas de présence de Pluie et/ou Vent

Synchronisation désenfumage et VNI

En cas d'enclenchement désenfumage, sur une zone de ventilation composé à la fois de châssis bi fonction et de châssis d'aération, il est parfois important de refermer les châssis d'aération de la zone afin de ne pas perturber le système de désenfumage.

Pour utiliser cette fonction, brancher sur les entrées digitales contact sec Synchronisation désenfumage Zx, l'information d'incendie de la zone en question. Après quelques secondes, les châssis d'aération de la zone se refermeront pendant que les châssis de désenfumage restent ouverts.

En cas d'utilisation d'une dérogation local, le bouton poussoir de la dérogation et l'information incident incendie en cours sur la zone doivent être branché en parallèle.

Présence pluie / vent

Sur détection de l'information présence de pluie ou de vent (via le contact externe à l'automate), l'automate gère :

- Une alarme « Présence de pluie »
- Fermeture impérative des ouvrants.

7. UTILISATION DE L'AUTOMATE ET VUE D'ENSEMBLE

7.1. COFFRET

Figure 26 : Coffret de l'automate de régulation

Terminal opérateur

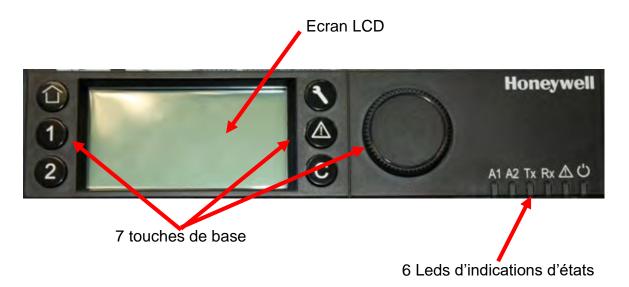


Figure 27 : Terminal de commande opérateur

Clavier

Le clavier possède 6 touches de base ainsi qu'un bouton rotatif, voir aussi la description qui suit.

Touches de base

Menu de démarrage : permet à l'utilisateur de retourner à l'écran de départ.

Touche Application 1: Non utilisé dans cette application.

Touche Application 2: Non utilisé dans cette application.

ACCES AU SYSTEME : seulement accessible depuis le niveau d'accès 3. Propose des paramètres d'application et des réglages concernant le système.

ALARMES: affiche des informations sur les alarmes (historiques d'alarmes, alarmes critiques et non critiques).

ANNULATION : permet à l'utilisateur de retourner à l'écran précédent, d'annuler une saisie erronée et de confirmer un message d'alarme.

BOUTON ROTATIVE ET POUSSOIR permet :

- Naviguer dans les menus,
- Modifier une valeur affichée d'une unité,
- Changer d'état un point Tout ou rien,
- > Sélectionner un point,
- > Confirmer d'éventuelles modifications,

RESET

Un RESET du matériel entraîne la perte de toutes les données RAM et de tous les numéros de code de configuration, ce qui exige une réinitialisation du régulateur.

Aussi il est conseillé de ne « resetter » le régulateur qu'au moment du téléchargement d'une nouvelle application.

Une pression simultanée de ces deux touches (Access au système et Annulation) entraîne un RESET (réinitialisation).

Un RESET s'obtient également en pressant le bouton de RESET situé en haut à droite du régulateur, à proximité de la prise RJ45.

Ecran LCD

L'écran LCD peut présenter 5 lignes de texte alphanumérique, avec 20 caractères par ligne, et est muni d'un rétroéclairage. L'écran contient généralement un ou plusieurs champs d'édition et d'affichage partagés entre ses 5 lignes.

Le rétroéclairage est allumé, une fois qu'une touche du clavier ou les boutons rotatifs sont appuyés. L'extinction se fait automatique s'il n'y a aucune manipulation au bout de 2 minutes.

REMARQUE: Les écrans montrés dans la présente notice sont des exemples et peuvent différer des écrans réellement visibles sur votre régulateur.

Leds d'indication d'états

La section suivante donne une vue d'ensemble sur le LEDS avec les statuts opérationnels appropriés du contrôleur.

Alimentation:

Allumée : Fonctionnement normal

> **Eteint** : Problème d'alimentation

- \triangle
- Eteint : Fonctionnement normal
- Allumage Permanent :
 - Passage en Mode Manuel de la fonction Ventilation Naturel Intelligente (VNI),
 - Présence de Pluie et/ou Vent,
- Clignotement Permanent :
 - Demande de fermeture par GTC (point physique TOR),
 - Demande d'ouverture par GTC (point physique TOR),
- Clignotement 4 fois :
 - o Défaillance sonde (entrées analogiques),

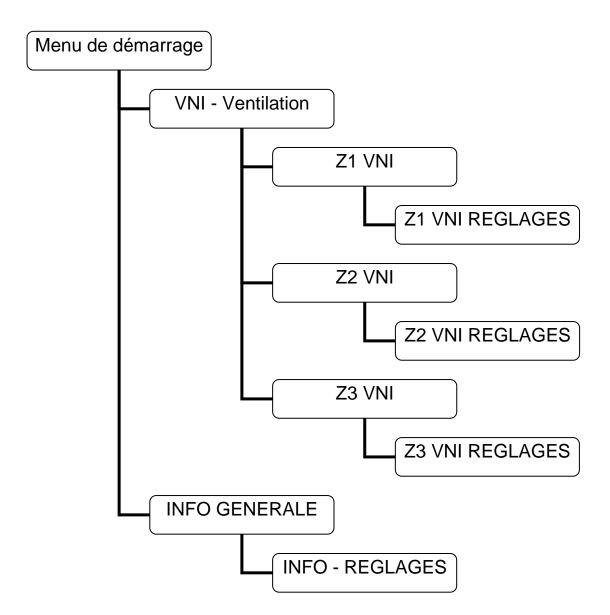
Communication C-BUS Emission (Tx)) / Réception (Rx) :

- Clignotement des Leds : Fonctionnement normal,
- 2 Leds éteintes : Pas de communication Bus,
- Clignotement Rx : Le contrôleur reçoit des informations d'autres contrôleurs mais la communication est défaillante,
- Clignotement Tx : Le contrôleur essaie de communiquer par le C-BUS mais pas de réponse,

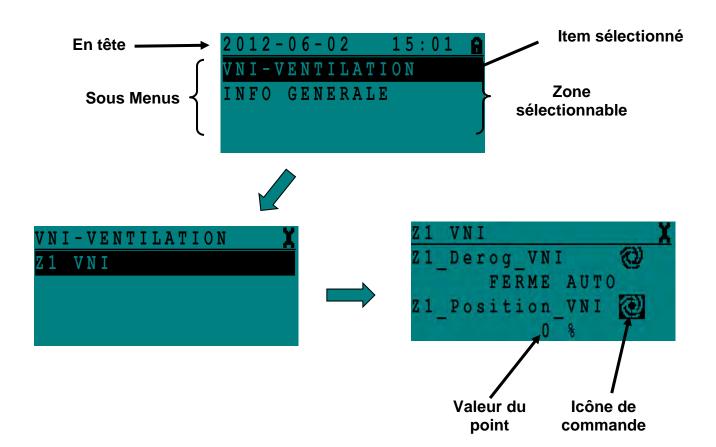
Led Application 1:

Allumée Fixe : Période de Free-Cooling,
 Clignotement 2 fois : Période de Free-Heating,
 Clignotement Permanent : Période de Night-Cooling,

Led Application 2:


Allumée Fixe : Dérogation Ventilation Naturelle (VNI),
 Clignotement Permanent : Dérogation Ventilation Naturelle (VNI),

7.2. MENUS ET SOUS MENUS


Le menu de démarrage par le biais du bouton rot

affiche l'ensemble des menus et sous menus, qui peuvent être sélectionnés

Un sous menu affiche des items de la liste sélectionnables comme la température, le statut, etc. et les valeurs correspondantes ou les options qui peuvent être éditées.

Icône de commande	Description
⊘ }	Auto
œ.	Le point est en mode Automatique et peut être mis en mode manuel
4 557	Manuel
2	Le point est en mode Manuel et peut être mis en mode automatique
_	Programme Horaire
(4)	Le programme horaire est affecté à ce point, peux être sélectionné et
	édité.
	Programme horaire exceptionnel
₩	Dérogation par un programme horaire exceptionnel dont la période est
~	dans les 24 prochaines heures.
	Le point doit avoir au préalable un programme horaire affecté.
<u> </u> ₹%	Edition
	Edition de l'item (point, programme horaire)
目」	Rajout
₹-	Rajout de l'item (point, programme horaire) à la liste
_	Effacer
	Suppression de l'item (point, programme horaire)
	Activer / Désactiver
~	L'item peut être activé ou désactivé

7.3. RACCORDEMENTS

Caractéristiques

Tension d'alimentation : 230 Vac

Consommation: 50 VA

Protection: 230 Vac: Fusible 1A aM (10 x 38)
 Entrées Tout ou Rien: Contact sec (à fermeture)

Entrées analogiques : Sonde de température, Sonde de luminosité

Sorties: Contact relais (à fermeture)
 Pouvoir de coupure: 3A / 230Vac
 Coffret: PVC gris RAL 7035 / IP65
 Dimensions (L*H*P): 380 x 200 x 140

Poids: 2,7 Kg

Identification des connections contrôleur de base pour les AdiaBox Maitre

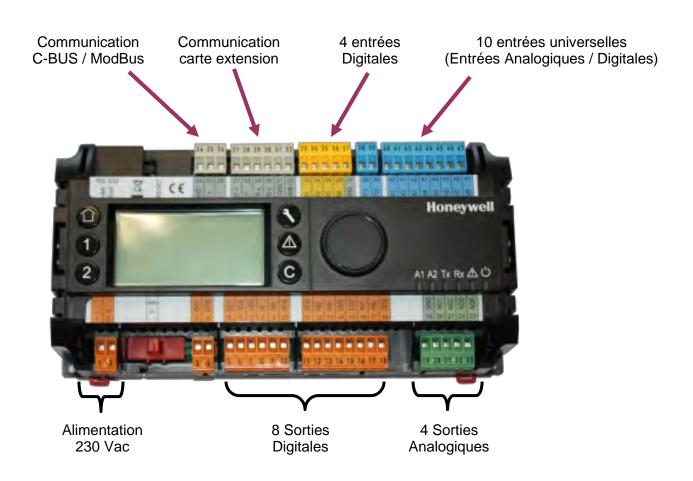
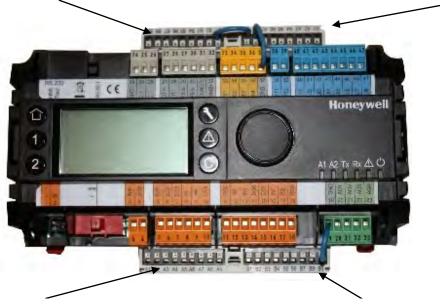


Figure 28 : Automate de régulation

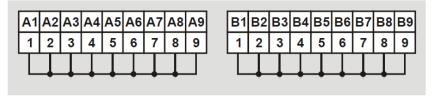

Entrées générales

Le commun de la plupart des points physiques est relié sur une borne commune :

- Sur le module de base, les bornes 19 et 37,
- 2 barrettes de commun sont utilisées pour la répartition des tensions,
- La barrette de commun haute est utilisée pour la tension 24Vcc,
- La barrette de commun basse est utilisée pour la tension 230 Vac,

Barrette de commun haute B1à B9 = +24V

Barrette de commun haute A1à A9 = 0V



Barrette de commun basse A1à A9 = Phase 230 Vac

Barrette de commun basse B1à B9 = Neutre 230 Vac

Figure 29 : Automate de régulation

Schéma de connexion interne des barrettes de commun

Entrées digitales

Décionation	Conto	N° Bo	ornes	T. 40.0	
Désignation	Carte	Signal	Commun	Туре	Description
Marche/Arrêt à distance et Réarmement à distance	Base	33		Contact sec	Fermé=Marche Ouvert=Arrêt
Fin de course registre air neuf ou Compte ur d'eau	Base	34	37	Contact sec	Fermé=Registre fermé Ouvert= Registre ouvert
Anémomètre / Présence Vent	Base	35		Impulsion ou Contact sec	
Présence Pluie	Base	36		Contact sec	Fermé=Pluie Ouvert=Pas de détection

Commande des équipements adiabatique

ADLADATIOUE	Corto	N° B	ornes	Type
ADIABATIQUE	Carte	Signal	Commun	Type
Commande vanne de vidange		5		
Commande pompe de circulation/Evacuation		6	8	230VAC
Commande ventilateur/extracteur	Base	7		
Commande vanne de remplissage		9	10	24 VAC
Commande Fermeture VNI	Dase	11	12	Contact sec
Commande Ouverture VNI		14	13	Contact sec
Commande registre air neuf		15	16	Contact sec
Commande Synthèse défaut		18	17	Contact sec

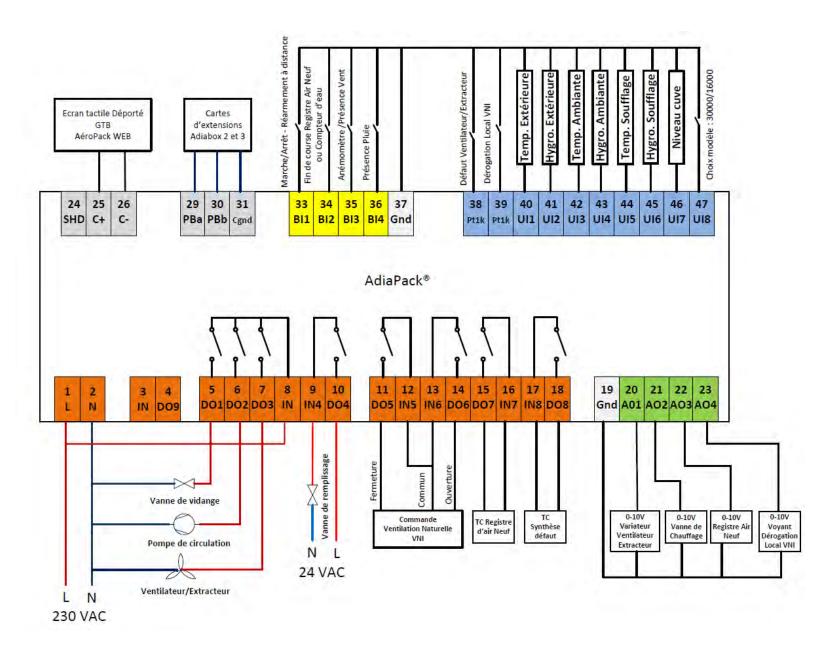
Entrées Analogiques

Décimation	Carta	N° Bornes		T. (2)	
Désignation	Carte	Signal	Commun	Туре	Description
Retour d'éta t ou défaut ventilateur/ extracteur		38		Contact sec	Fermé = Statut OK Ouvert = Défaut
Dérogation local VNI		39		Contact sec	Fermé= Demande de dérogation
Température extérieure		40		NTC20K	
Hygrométrie extérieure	Base	41		0-10V	
Température ambiante		42	37	NTC20K	
Hygrométrie ambiante		43		0-10V	
Température soufflage		44		NTC20K	
Hygrométrie soufflage		45		0-10V	
Niveau de la cuve d'ea∪	1	46		0-5V	
Choix modèle : 30000/16000		47		Contact sec	Fermé = 30000 Ouvert = 16000

Sorties Analogiques

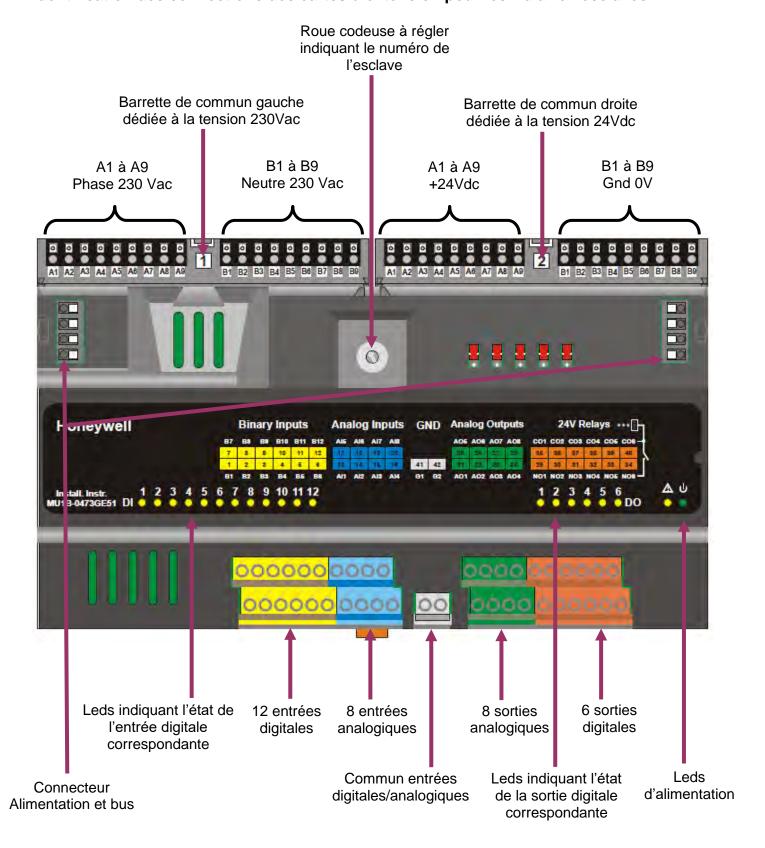
Décignation	Corto	N° B	ornes	Tyroc
Désignation	Carte	Signal	Commun	Туре
Variateur Ventilateur/Extracteur		20		
Vanne de chauffage	Daca	21	19	0 10 1/
Registre de mélange Air Neuf	Base	22	19	0 -10 V
Voyant dérogation VNI		23		

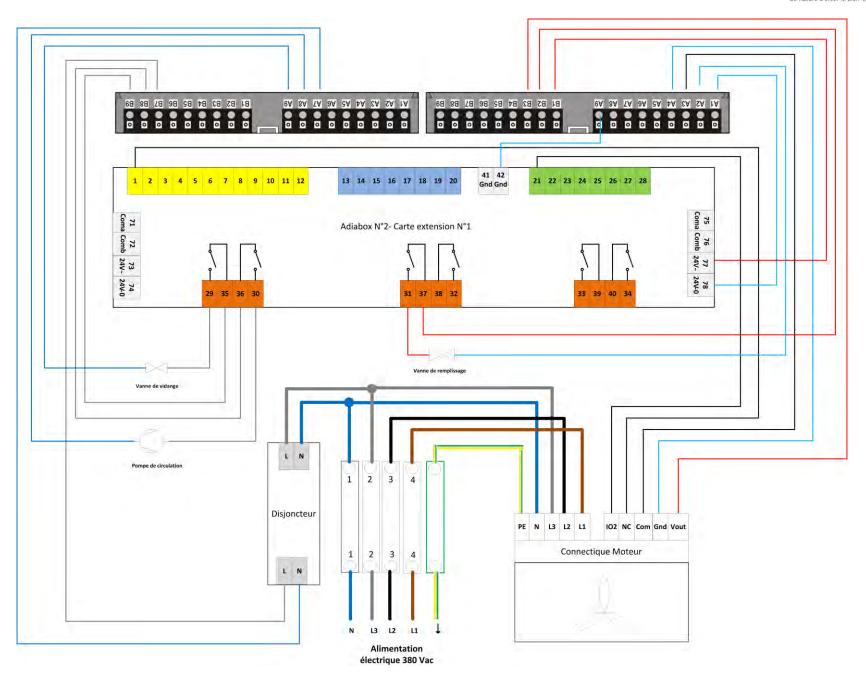
7.4. RACCORDEMENT ADIABOX N°1



Bornes	Signal	Comment
1	L	Phase (115VAC to 230VAC)
2	N	Neutre
3	IN9~	
4	DO9	-
5	DO1	Cde vanne de vidange
6	DO2	Cde pompe de circulation
7	DO3	Cde ventilateur/Extracteur
8	IN	Commun DO1 à D03
9	IN4	Commande vanne de
10	DO4	remplissage 24Vac
11	DO5	
12	IN5	Commande Fermeture VNI
13	IN6	Commande Ouverture VNI
14	DO6	Communac Guverture VIVI
15	D07	Commande registre air neuf
16	IN7	Commande registre an neur

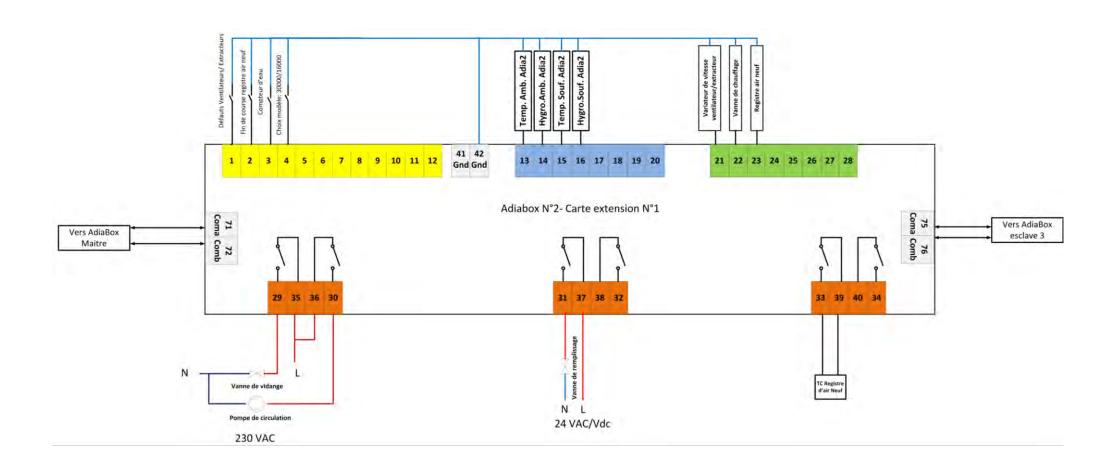
Bornes	Signal	Comment
17	IN8	
18	DO8	Commande synthèse défaut
19	GND	Commun AO1 à AO4
20	AO1	Variateur
21	AO2	Vanne de chauffage
22	AO3	Registre air neuf
23	A04	Voyant dérogation VNI
24	SHD	
25	C+	Modbus +
26	Ċ	Modbus -
27	OT+	
28	ОТ-	
29	РВ а	Bus Carte Extension - A
30	PB b	Bus Carte Extension - B
31	CGND	Communication ground
32	WMB	Sylk Bus


Bornes	Signal	Comment
33	BI1	Marche / Arrêt – Réarmement
34	DI3	Fin de course registre air neuf
34	BI2	ou Compteur eau
35	BI3	Anémomètre / Présence Vent
36	BI4	Présence Pluie
37	GND	Commun
38	PT100	Défaut ventilateur/extracteur
39	PT100	Dérogation Local VNI
40	UI1	Température extérieure
41	UI2	Hygrométrie extérieure
42	UI3	Température ambiante
43	UI4	Hygrométrie ambiante
44	UI5	Température de soufflage
45	UI6	Hygrométrie de soufflage
46	UI7	Niveau de la cuve
47	UI8	Choix Modèle :30000/16000



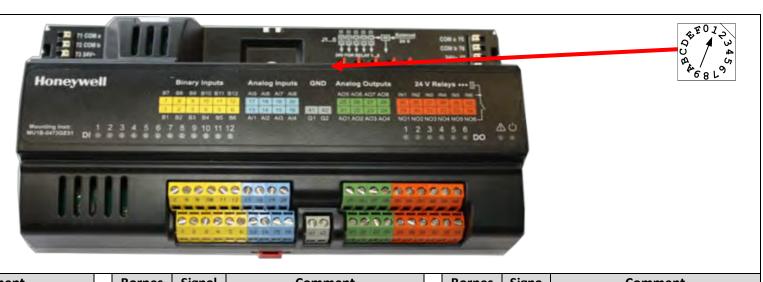
Identification des connections des cartes d'extension pour les AdiaBox esclaves

7.5. CARTE D'EXTENSION N°1 – ADIABOX N°2

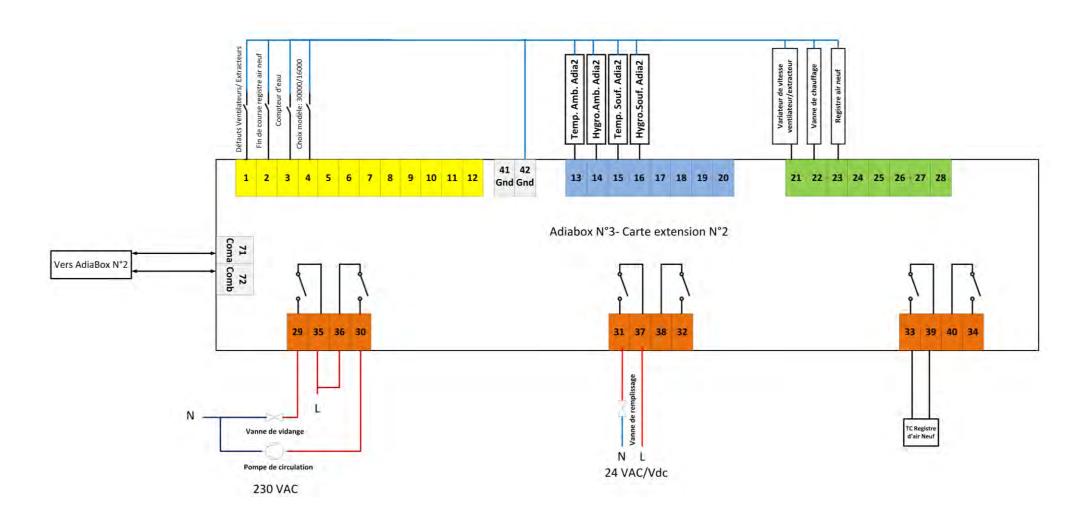


Bornes	Signa	Comment
1	BI1	Défaut ventilateur/ extracteurs
2	BI2	Fin de course registre air neuf
3	BI3	Compteur d'eau
4	BI4	Choix Modèle :30000/16000
5	BI5	
6	BI6	
7	BI7	
8	BI8	
9	BI9	
10	BI10	
11	BI11	
12	BI12	
13	Al1	Température ambiante
14	AI2	Hygrométrie ambiante
15	AI3	Température soufflage
16	AI4	Hygrométrie soufflage

Bornes	Signal	Comment
17	AI5	
18	AI6	
19	AI7	Niveau Cuve
20	AI8	
21	AO1	Variateur de vitesse
		ventilateur /Extracteur
22	AO2	Vanne de chauffage
23	AO3	Registre Air Neuf
24	A04	
25	AO5	
26	A06	
27	A07	
28	AO8	
29	NO1	Commande vanne vidange
30	NO2	Commande pompe
31	NO3	Commande vanne d'arrivée d'eau
32	NO4	

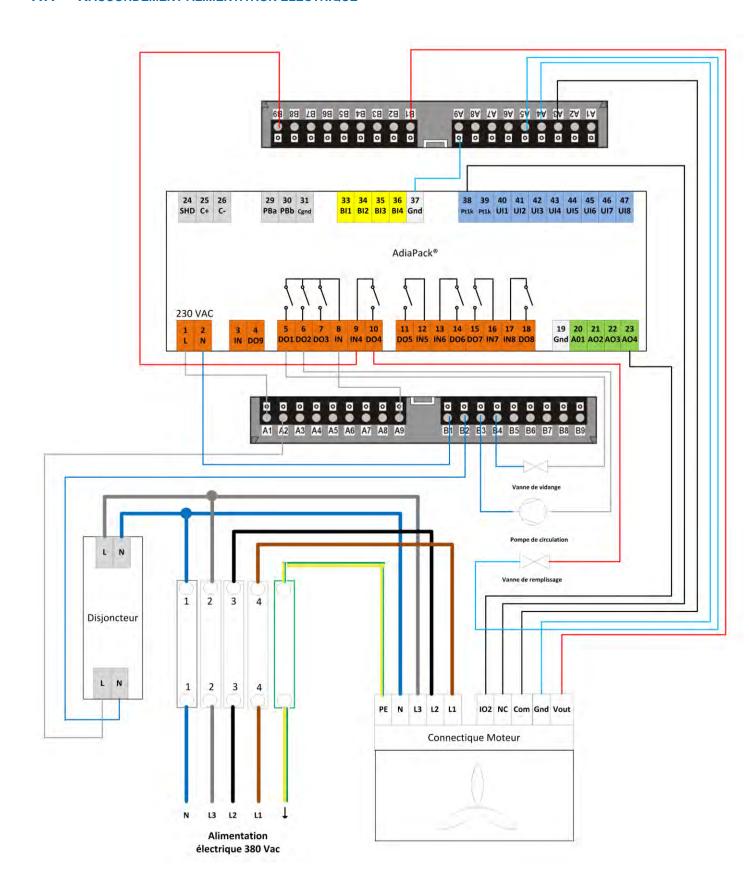

Bornes	Signa	Comment	
33	NO5	Commande registre Air Neuf	
34	NO6		
35	CO1	Commun	
3 6	CO2	Commun	
37	CO3	Commun	
38	CO4	Commun	
39	CO5	Commun	
40	CO6	Commun	
71	Com	Panel Bus signal A	
72	Com	Panel Bus signal B	
73	24V~	Alimentation 24 Volt – Phase	
74	24V~	Alimentation 24 Volt – Neutre	
75	Com	Panel Bus signal A	
76	Com	Panel Bus signal B	
77	24V~	Alimentation 24 Volt – Phase	
78	24V~	Alimentation 24 Volt – Neutre	

7.6. CARTE D'EXTENSION N°2 – ADIABOX N°3



Bornes	Signa	Comment
1	BI1	Défaut ventilateur/extracteurs
2	BI2	Fin de course registre air neuf
3	BI3	Compteur d'eau
4	BI4	Choix Modèle :30000/16000
5	BI5	
6	BI6	
7	BI7	
8	BI8	
9	BI9	
10	BI10	
11	BI11	
12	BI12	
13	Al1	Température ambiante
14	Al2	Hygrométrie ambiante
15	AI3	Température soufflage
16	AI4	Hygrométrie soufflage

Bornes	Signal	Comment
17	AI5	
18	AI6	
19	AI7	Niveau Cuve
20	AI8	Débit Ventilateur
21	AO1	Variateur de vitesse
		ventilateur /Extracteur
22	AO2	Vanne de chauffage
23	AO3	Registre Air Neuf
24	AO4	
25	AO5	
26	A06	
27	A07	
28	AO8	
29	NO1	Commande vanne vidange
30	NO2	Commande pompe
31	NO3	Commande vanne d'arrivée d'eau
32	NO4	


Bornes	Signa	Comment	
33	NO5	Commande registre Air Neuf	
34	NO6		
35	CO1	Commun	
36	CO2	Commun	
37	CO3	Commun	
38	CO4	Commun	
39	CO5	Commun	
40	CO6	Commun	
71	Com	Panel Bus signal A	
72	Com	Panel Bus signal B	
73	24V~	Alimentation 24 Volt – Phase	
74	24V~	Alimentation 24 Volt – Neutre	
75	Com	Panel Bus signal A	
76	Com	Panel Bus signal B	
77	24V~	Alimentation 24 Volt – Phase	
78	24V~	Alimentation 24 Volt – Neutre	

7.7. RACCORDEMENT ALIMENTATION ELECTRIQUE

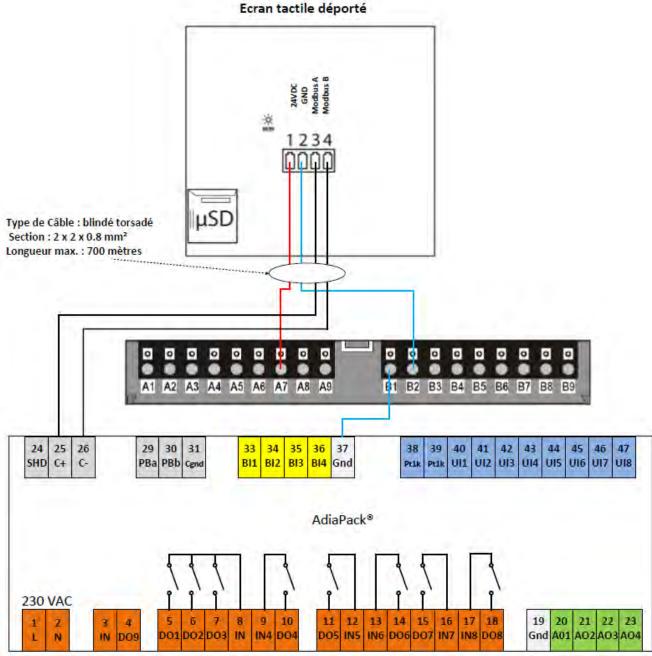
7.8. ECRAN TACTILE DEPORTE

7.8.1 Caractéristiques techniques

Alimentation : 12 ou 24 Vcc/Vac

■ Température de fonctionnement : 0...50°C

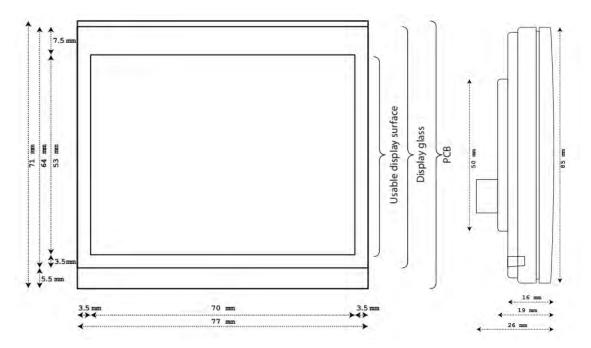
Résolution de l'écran : 320 x 240 px

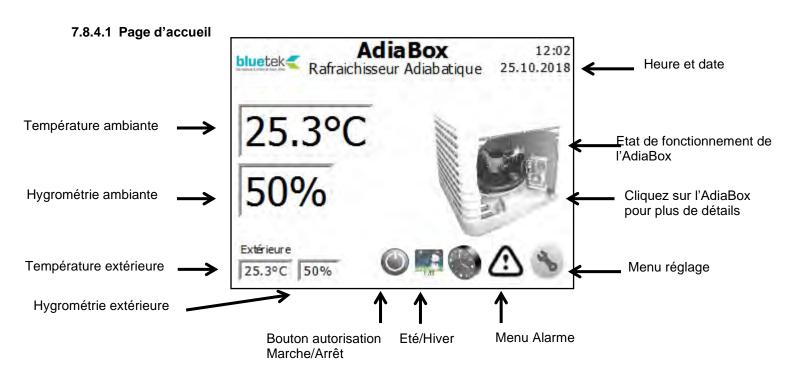

Classe de protection : IP20

Sonde de température intégrée

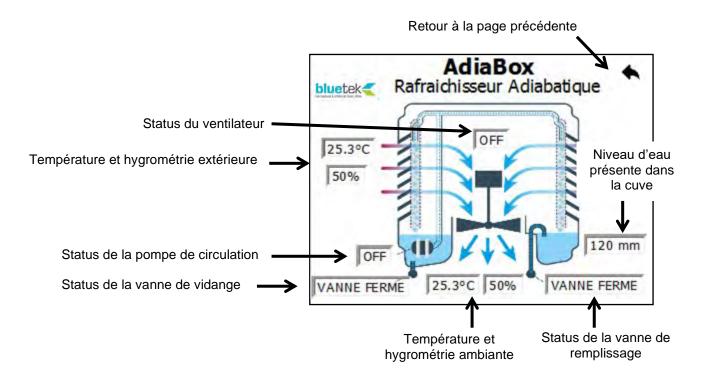
Communication Modbus

7.8.2 Raccordements

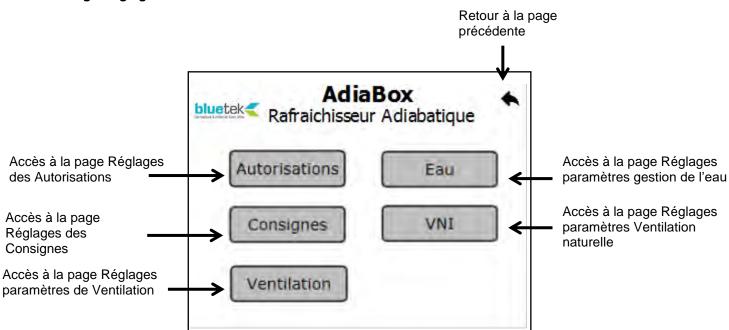



L'alimentation 24Vdc de l'écran peut être branchée directement dans le coffret électrique de l'AdiaBox. La distance maximale entre l'écran tactile déporté et l'AdiaBox est de 700 mètres.

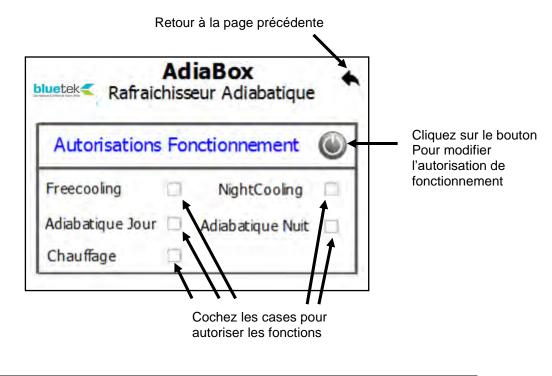
7.8.3 <u>Dimensions</u>


7.8.4 Mode d'emploi de l'écran

Bouton autorisation Marche/Arrêt		Arrêt Mai		Marche
Etat de fonctionnement de l'AdiaBox	A l'arrêt		En Marche	

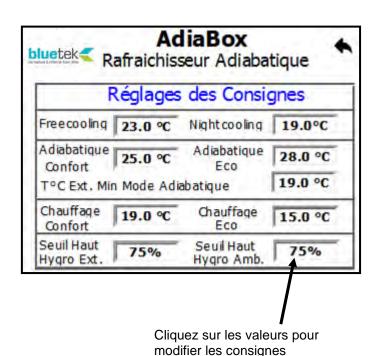


7.8.4.2 Page Etat de fonctionnement de l'Adiabox


Statut de la pompe de circulation	OFF = Pompe à l'arrêt	ON = Pompe en marche		
Statut du ventilateur	OFF =Moteur à l'arrêt	ON =Moteur en marche		

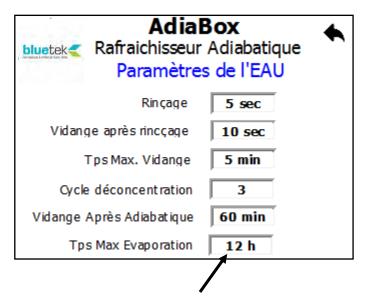
7.8.4.3 Page Réglages

7.8.4.4 Page Autorisation de fonctionnement

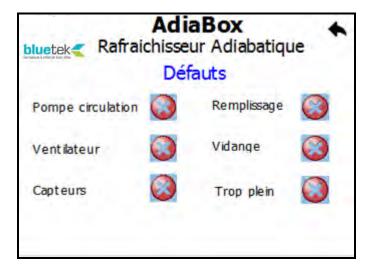


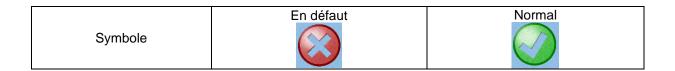
Bouton autorisation
Fonctionnement

Arrêt

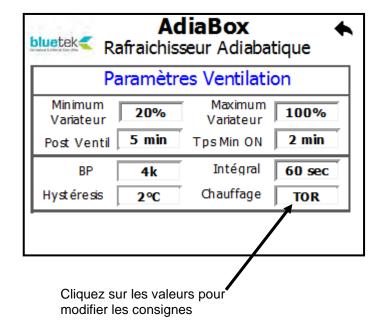

Marche

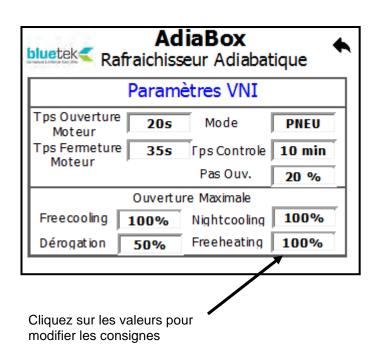
7.8.4.5 Page Réglages des consignes



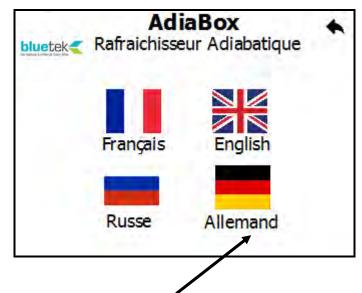

7.8.4.6 Page réglages des paramètres de l'eau

Cliquez sur les valeurs pour modifier les consignes


7.8.4.7 Page Affichage des défauts

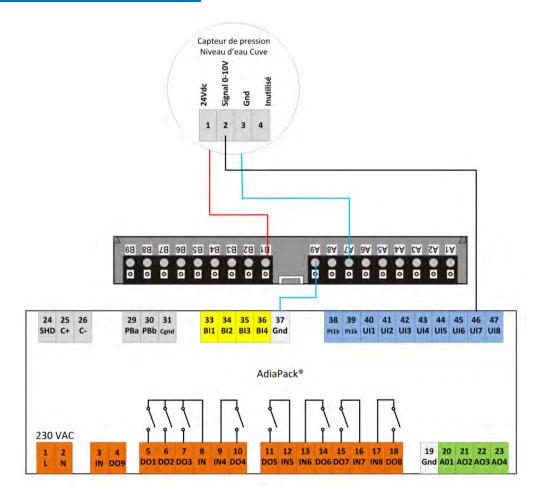


7.8.4.8 Page réglages des paramètres de ventilation

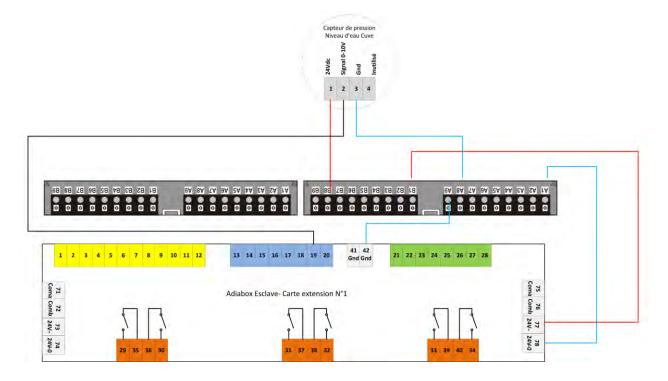


7.8.4.9 Page réglages des paramètres de ventilation naturelle

7.8.4.10 Page Choix de la langue

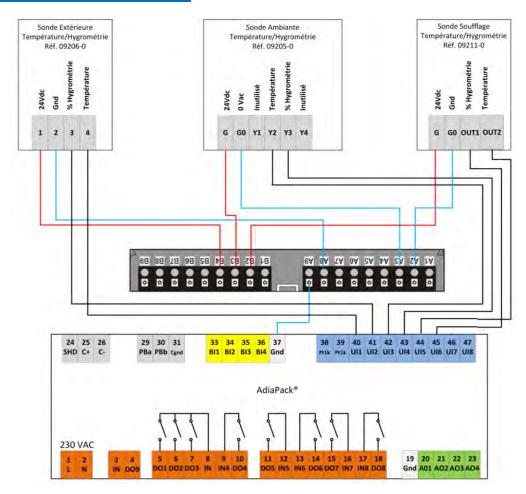


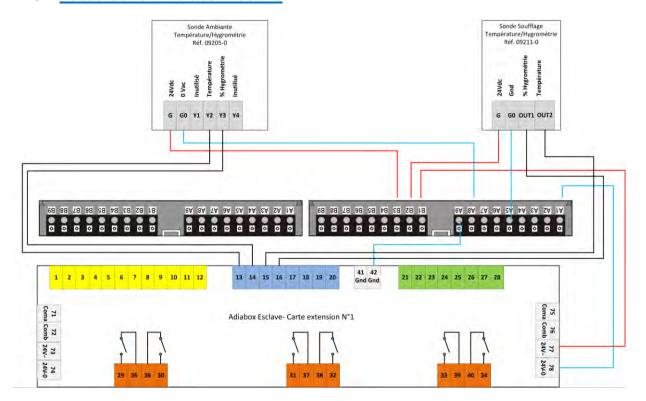
Cliquez sur le drapeau pour changer de langue



7.9. CAPTEUR DE PRESSION MESURANT LE NIVEAU D'EAU DANS LA CUVE

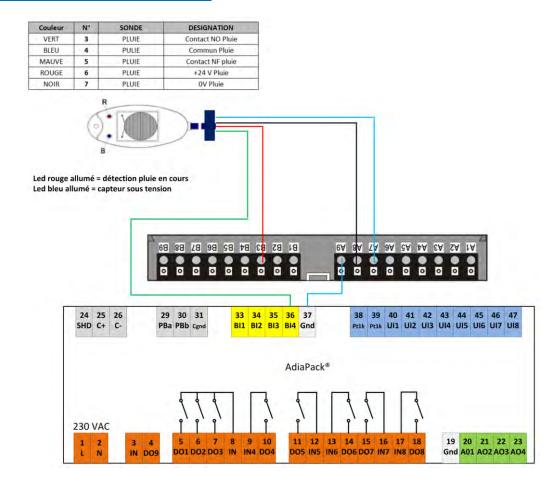
7.9.1 Raccordement Adiabox Maitre

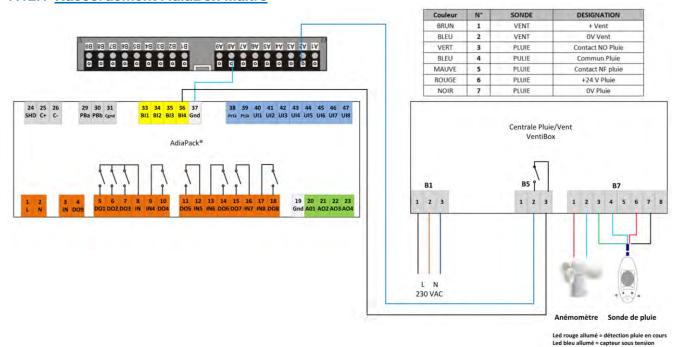

7.9.2 Raccordement Adiabox Esclave



7.10. SONDES DE TEMPERATURE ET DE D'HYGROMETRIE

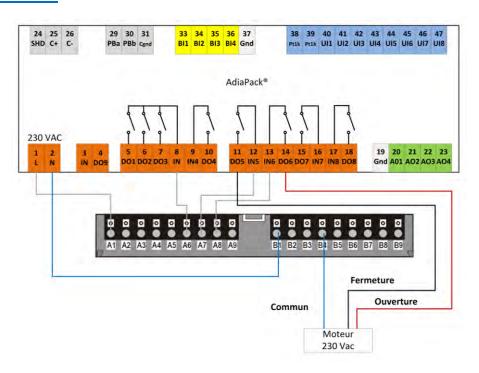
7.10.1 Raccordement Adiabox Maitre


7.10.2 Raccordement Adiabox Esclave

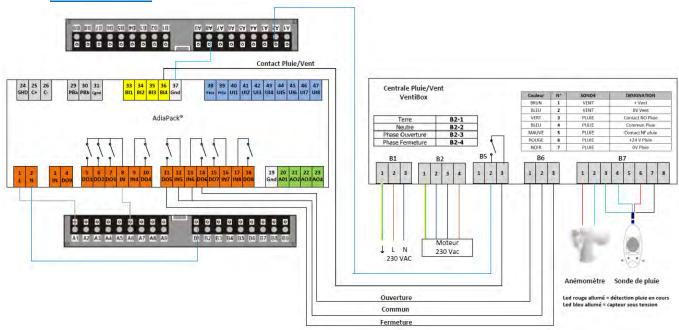

7.11. SONDES DE PLUIE

7.11.1 Raccordement AdiaBox Maitre

7.12. SONDE DE PLUIE ET VENT VIA STATION METEO VENTIBOX


7.12.1 Raccordement AdiaBox Maitre

7.13. COMMANDE MOTEUR VNI EN 230 VAC – 3A MAX.

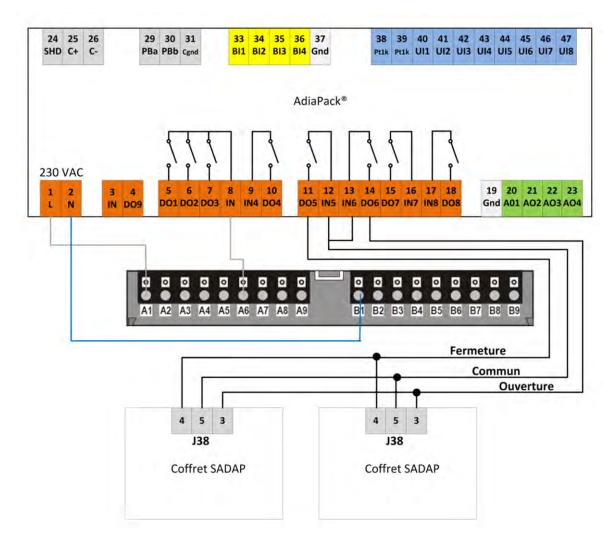

7.13.1 Raccordement

Ramener la phase du bornier de commun vers les bornes 12 et 13. La consommation des moteurs ne doit pas dépasser 3A.

7.14. COMMANDE MOTEUR VNI EN 230 VAC – 10A MAX.

7.14.1 Raccordement

La consommation des moteurs ne doit pas dépasser 3A.


Ne pas utiliser la barrette de commun basse qui est reliée au 230Vac sous peine de destruction des coffrets de puissance recevant des ordres de commande ouverture/fermeture en contacts secs!

Faire un shunt entre les bornes 12 et 13 de l'AdiaPack pour relier les communs des relais DO5 et DO6 (borne 11 et 14).

7.15. COMMANDE MOTEUR VNI EN 24 VCC

7.15.1 Exemple de raccordement avec des coffrets HYPERION

Ne pas utiliser la barrette de commun basse qui est reliée au 230Vac sous peine de destruction des coffrets de puissance recevant des ordres de commande ouverture/fermeture en contacts secs!

Faire un shunt entre les bornes 12 et 13 de l'AdiaPack pour relier les communs des relais DO5 et DO6 (borne 11 et 14).

7.16. **DESCRIPTION DES POINTS (PHYSIQUES ET PSEUDO)**

Entrées analogiques (entrées physiques)

Temp_Ext
 Hygro_Ext
 Temp_Amb
 Hygrométrie extérieure,
 Temp_Amb
 Hygrométrie ambiante,
 Hygro_Amb
 Temp_Soufflage
 Hygrométrie au soufflage,
 Hygro_Soufflage
 Hygrométrie au soufflage,

Niveau_CuveNiveau de la cuve,Débit_VentiloDébit de la ventilation

Sorties Analogiques (Sorties Physiques)

Var_Ventilo
 Signal de commande du variateur ventilateur/extracteur

Vanne_Chauffage
 Signal de commande de la vanne de chauffage

Registre_AirNeuf
 Signal de commande du registre air Neuf

Z1_Led_Derog_VNI
 Voyant de signalisation de la dérogation VNI zone 1,

Entrées Tout ou Rien (Entrées Physiques)

TS MarcheArret Marche/Arrêt de l'installation et réarmement

TS_FdcReg_Eau
 Fin de course Registre air neuf ou compteur d'eau

TS_Extracteur
 Retour d'état / Défaut de l'extracteur

TS_Z1_Derog_VNI Dérogation locale ouverture/fermeture, Synchro désenfumage Z1

• TS_PresencePluie Détection de la pluie

Sorties Tout ou Rien (Sorties Physiques)

TC_Vanne_Vidange
 Commande de la vanne de vidange

• TC_PPCirc_Evac Commande de la pompe de circulation/Evacuation

TC_Vanne_Arrive
 TC_Ventilateur
 TC_Synth_Def
 Commande de la vanne de remplissage
 Commande du ventilateur/extracteur
 Commande de la synthèse défaut

TC_RegistreAirNeuf
 Commande TOR registre air neuf

7.17. PSEUDO ANALOGIQUES (POINTS LOGICIELS)

7.17.1 Paramètres de gestion de l'eau

Nom	Description	Valeur par défaut	Unité	Min	Max
Tps_Rincage	Durée nécessaire au rinçage de la cuve	5	sec	5	60
Tps_VidangeR	Durée vidange après rinçage	10	sec	10	60
Tps_Maxi_Vidange	Durée maximale de la vidange	10	min	1	10
Tps_VidangeEvap	Tempo vidange après rafraichissement	60	min	1	120
Cycle_Deconc	Nombre de cycle de fonctionnement avant lancement du processus de déconcentration en minéraux	3			
Tps_Maxi_Evaporati	Durée maximale de l'évaporation	12	heures		

7.17.2 Paramètres de la ventilation

Nom	Description	Valeur par défaut	Unité	Min	Max
Vmin_Ventilo	Vitesse minimum du ventilateur	20	%	0	100
Vmax_Ventilo	Vitesse maximum du ventilateur	100	%	0	100
Tps_Post_Ventil	Durée de la post ventilation chauffage	180	S	0	600
Tps_Min_Ventilo	Temps de fonctionnement minimum de la ventilation	60	sec	0	600
BPro_Ventilo	Bande proportionnelle de la régulation PI pour le ventilateur	3	К	0	6
Integral_Ventilo	Intégrale de la régulation PI pour le ventilateur	0	S	0	600

7.17.3 Consignes d'ambiance

Nom	Description	Valeur par défaut	Unité	Min	Max
PC_Bas_Amb	Limite basse de la température ambiante en mode nightcooling	19	°C	10	30
PC_Temp_Amb	Point de consigne de la température ambiante en mode freecooling	23	°C	10	30
PC_Adia_Confort	Point de consigne confort de la température ambiante en mode adiabatique	24	°C	10	30
PC_Adia_Eco	Point de consigne Economique de la température ambiante en mode adiabatique	20	°C	10	30
PC_7Chauffage_Conf	Point de consigne confort de la température ambiante en mode chauffage	20	°C	10	30
PC_Chauffage_Eco	Point de consigne Economique de la température ambiante en mode chauffage	16	°C	10	30
TextMiin_Adiabatiq	Température extérieure minimal pour autorisation de l'adiabatique	23	°C	10	30

7.17.4 Paramètres VNI

Nom	Description	Valeur par défaut	Unité	Min	Max
Z1_Pas_Ouv	Pas d'ouverture de la zone 1 pour Free-Cooling	20	%	0	100
Z1_Tps_Ouv	Temps ouverture des ouvrants de la zone 1	18	sec	0	100
Z1_Tps_Ferm	Temps de fermeture des ouvrants de la zone 1	35	sec	0	100
Z1_Ouv_Max_Free	Position d'ouverture maximum, pour la zone 1 (100 %) pour Free-Cooling	100	%	0	100
Z1_Ouv_Max_Purge	Position d'ouverture maximum, pour la zone 1 pour le Night Cooling (Purge Nocturne)	50	%	0	100
Z1_Ouv_Max_FreeCh	Position d'ouverture maximum, pour la zone 1 pour le Free-Heating	100	%	0	100
Z1_Ouv_Max_Derog	Position d'ouverture maximum, pour la zone 1 pour le mode dérogation	100	%	0	100
Z1_Postion_VNI	Position actuelle (uniquement en mode SADAP)	-	%	0	100
Tps_2_controles_VNI	Temps entre 2 contrôles de température pour la fonction VNI	10	min	0	60

7.17.5 Paramètre de régulation chauffage

Nom	Description	Valeur par défaut	Unité	Min	Max
BPro_Chauffage	Chauffage Bande proportionnelle de la régulation PI pour la vanne de chauffage		К	0	6
Integral_Chauffage	Integral_Chauffage Intégrale de la régulation PI pour la vanne de chauffage		S	0	600
Hysteresis_Chauffage	Hysteresis_Chauffage Hystérésis de la fonction chauffage		K	0	10

7.18. PSEUDO TOUT OU RIEN (POINTS LOGICIELS)

7.18.1 Autorisation de fonctionnement

Nom	Description	Valeur par défaut	Valeur
Auto_Freecooling	Autorisation de fonctionnement Freecooling	OUI	OUI/NON
Auto_Nightcooling	Autorisation de fonctionnement Nightcooling	OUI	OUI/NON
Auto_Adia_Occup	Autorisation de fonctionnement Adiabatique en occupation	OUI	OUI/NON
Auto_Adia_Inoccup	Autorisation de fonctionnement Adiabatique en inoccupation	OUI	OUI/NON
Auto_Freeheating	Autorisation de fonctionnement Freeheating		OUI/NON
Auto_Chauffage	ge Autorisation de fonctionnement Chauffage		OUI/NON
Presence_GTC	Permet d'activer l'écriture des registres depuis une GTC	NON	OUI/NON

7.18.2 <u>Défaut</u>

Nom	Nom Description	
Def_PPCirc_Evac	Def_PPCirc_Evac Défaut pompe de circulation / Evacuation	
Def_Remplissage	Def_Remplissage Défaut remplissage de la cuve	
Def_Ventilo	Défaut ventilateur	Normal/Alarme
Def_Vidange	Défaut vidange	Normal/Alarme
Def_TropPlein	Défaut trop plein	Normal/Alarme

En cas de défaut, vérifier les éléments suivants :

Def_PPCirc_Evac	Vérifier la pompe de circulation
Def_Remplissage Vérifier la vanne de remplissage, le capteur de niveau et la vanne de	
Def_Ventilo	Vérifier le ventilateur
Def_Vidange Vérifier la vanne de vidange	
Def_TropPlein	Vérifier la vanne de remplissage, la vanne vidange et le capteur de niveau

7.18.3 Fonctionnement en cours

Nom	Description	Valeur
Z1_Derog_VNI	Information mode dérogation locale VNI de la zone 1	Auto/Ouverture Manuel/ Fermeture Manuel
Z1_FreeCooling	Information zone 1 en mode Free-Cooling,	Activé/Désactivé
Z1_Purge_Noct	Information zone 1 en Purge Nocturne,	Activé/Désactivé
Occupation_Horaire	Information période horaire de Free-Cooling	8 :00 à 18 :00 par défaut
Purge_Horaire	Information période horaire de Purge Nocturne	3:00 à 7 :00 par défaut
Periode_VNI	Période annuelle de ventilation naturelle (Free- cooling et Purge)	1 er mai au 15 octobre

8. MISE EN SERVICE ET ACCES

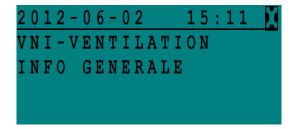
Avant la mise sous tension du coffret, assurez-vous que le câblage est correct.

8.1. MOT DE PASSE

Procédure de saisie du mot de passe

Pour entrer un mot de passe, procédez comme suit :

1. Avec le bouton rotatif, mettre le curseur sur l'icône correspondant à la fonction mot de passe.


2. Appuyer sur ce bouton rotatif. Le champ d'entrée du mot de passe est indiqué par les quatre « * ». Le premier digit, le chiffre « 5 » clignote.

- 3. Entrer le mot de passe en augmentant ou réduisant la valeur de chaque digit individuellement au moyen du bouton rotatif.
- 4. Le déplacement sur le digit suivant se fait en validant la valeur par pression sur le bouton rotatif.

Après avoir sélectionné un accès nécessitant le Mot de Passe, l'icône correspondant apparaît.

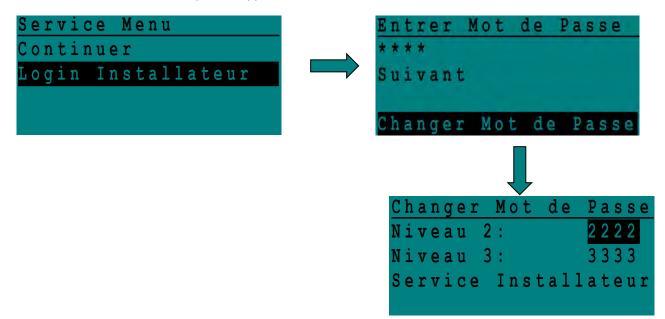
Niveau d'accès

La protection par mot de passe empêche les personnes non autorisées d'accéder aux données du système afin de garantir un fonctionnement fiable et sans problèmes avec les valeurs préprogrammées.

Le niveau d'accès 1 n'est pas protégé par un mot de passe. Ce niveau ne permet que de consulter certaines données : points de consigne, points de commutation, temps de fonctionnement.

Les niveaux d'accès 2 et 3 sont protégés par un mot de passe. Les personnes connaissant les mots de passe correspondants peuvent modifier les valeurs préprogrammées.

Niveau accès	Mot de passe par défaut	Icone
1	Aucun	A
2	2222	9
3	3333	X


Sur les écrans appropriés, le niveau d'accès en vigueur est indiqué par la présente d'une icône spécifique sur la 1ère ligne.

Modifier le mot de passe

1. Appuyer sur le bouton ACCES AU SYSTEME.

Afin de modifier un mot de passe, vous devez accéder au niveau d'accès 3. Après avoir sélectionné le champ "Modifi" l'écran "Modifier le mot de passe" apparaît.

Vous pouvez maintenant modifier un ou les deux mots de passe.

Paramètres Publics

• **Début Période VNI** Début de la période d'autorisation de la fonction Ventilation Naturelle

Valeur par défaut = 501 **⇒ 1 Mai**

• Fin Période VNI Fin de la période d'autorisation de la fonction Ventilation Naturelle

Valeur par défaut = 1015 ⇒ **15 Octobre**

Paramètres

• Temps de maintien de la demande d'ouverture / fermeture par la dérogation locale pour la fonction Ventilation naturelle (VNI) - (en secondes)

Numéro de zone	Fichier paramètre	Numéro paramètre	Valeur par défaut
1	55	3	
2	56	3	3600 secondes
3	57	3	

8.2. DEROGATION LOCALE VNI

Un bouton poussoir permettra une dérogation locale, avec l'information de l'état via un signal sous forme de voyant.

Sur l'action d'une impulsion de ce bouton de dérogation locale, la position demandée sera active pendant une période prédéfinie paramétrable (60 min par défaut).

09208-0
09208-1

1ère impulsion : Ouverture à la position maximale de dérogation,

• 2ème impulsion : Fermeture en Mode Manuel,

■ 3^{ème} impulsion : Passage en mode Automatique

Référence: 09208-0: Dérogation locale (poussoir) / 09208-1: Dérogation locale (clé)

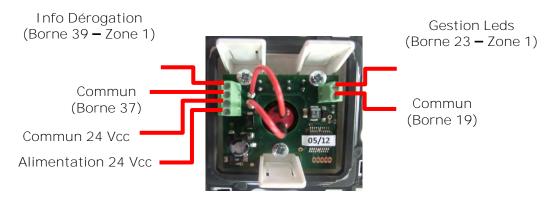
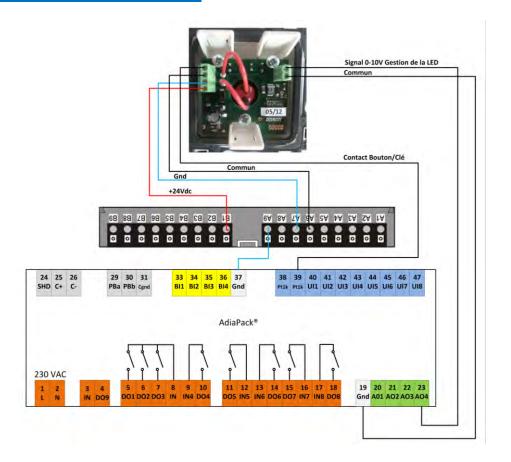
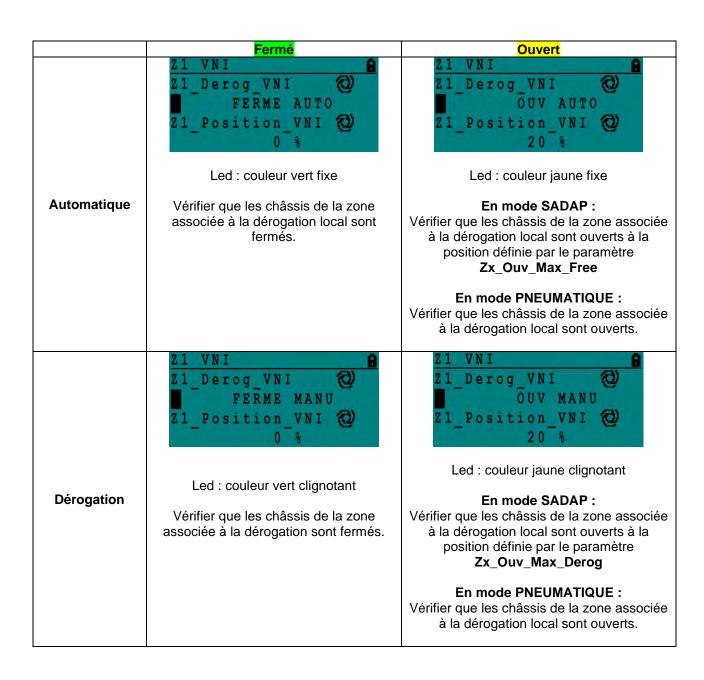



Figure 31 : Schéma câblage boitier dérogation locale

L'alimentation 24 Vcc du bouton de dérogation est disponible dans le coffret.

8.2.1 Raccordement AdiaBox Maitre

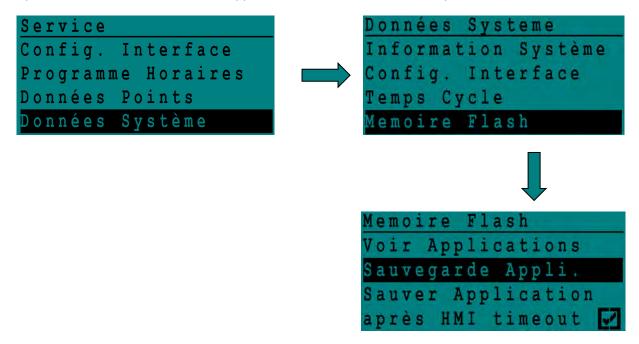


PRECONISATIONS:

Les connecteurs de raccordement étant délicats, respecter les conseils suivants Fil de raccordement : Type 3 x paires téléphonique blindée 9/10

Outillage : Tournevis recommandé : lame de 2mm maxi

MODE	ETAT LED	VERTE	ROUGE	JAUNE	BLANC
AUTOMATIQUE	FIXE	FERME	DEFAUT	OUVERT	-
DEROGATION	CLIGNOTANT	FERME	DEFAUT	OUVERT	
REPERE	-	F	D	0	-

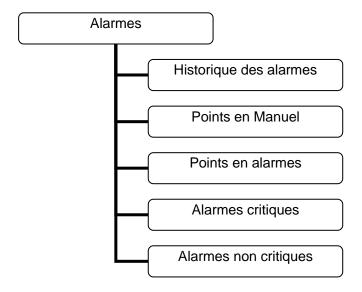


8.3. FLASH EPROM

Après la mise en service et donc le paramétrage de l'ensemble des valeurs de consigne, il est nécessaire de mettre à jour la Flash Eprom avec l'ensemble des derniers paramètres.

Après sélection de "Flash EPROM" apparaît une liste avec entête correspondant.

Indépendamment de l'application en cours ainsi que de vos données de configuration, cette liste contient toujours les trois mêmes entrées à partir desquelles vous pourrez choisir.


- Enregistrer Application : Permet d'enregistrer toutes les données de l'application en cours sauvegardées dans la Flash EPROM.
- Voir Application : Affiche les applications sauvegardées avec les données correspondantes.

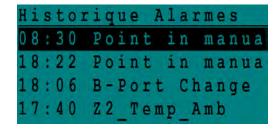
Pour effacer une sauvegarde, il suffit, au préalable, de la visualiser et de la sélectionner par le bouton rotatif.

9. TOUCHE ALARME

Après pression sur la touche d'accès directe ALARME apparaît le menu principal offrant les possibilités suivantes :

- Historique des alarmes,
- Points en mode Manuel,
- Points en alarme,
- Alarmes critiques,
- Alarmes non-critiques.

9.1. HISTORIQUE D'ALARMES

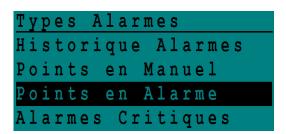

Les dernières 99 Alarmes sont sauvegardées dans la mémoire d'alarmes. Parmi les informations typiques concernant les alarmes, on peut citer :

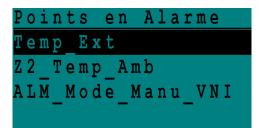
- Date et heure de l'alarme;
- Nom du point de données en alarme;
- Valeur/état du point en alarme;
- Texte d'alarme (par ex. "Alarme MIN1").

En cas de dépassement de la capacité de mémorisation des alarmes, la première alarme entrée est effacée. Les alarmes sont ensuite effacées dans l'ordre de leur arrivée. Possibilité d'afficher sur le régulateur le contenu de la mémoire des alarmes.

9.2. POINTS EN MODE MANUEL

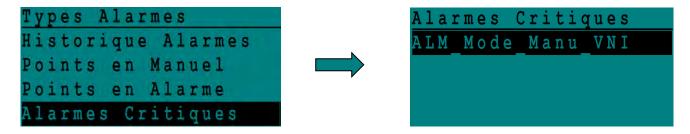
Les points de données en manuel sont l'ensemble des données réglables par l'utilisateur (exemple : point de consigne) ainsi que les valeurs forcées lors des tests.





9.3. POINTS EN ALARME

L'ensemble des points de données qui se trouvent actuellement en alarme (ce qui signifie qu'une limite a été dépassé dans le cas d'un point analogique et que dans le cas d'un point tout ou rien l'état d'alarme a été atteint) pourra être affiché sur le régulateur. Après sélection de cette fonction, le système affiche le nom du point concerné ainsi que le texte d'alarme correspondant.



9.4. ALARMES CRITIQUES / NON-CRITIQUES

Les attributs suivants peuvent déclencher des alarmes pour ensuite être stockés dans la mémoire d'alarmes et aussi transmis.

Caractéristiques d'alarme

Avec les caractéristiques d'alarme " Limit Min", "Limit Max", "Compteur" ainsi que "état d'alarme", on pourra répartir les alarmes en alarmes critiques et non-critiques.

REMARQUE: La caractéristique "mode de fonctionnement" déclenche toujours une alarme critique.

Alarmes du système : Définition

L'afficheur du régulateur permet de visualiser des défauts de fonctionnement des différents régulateurs (par ex. panne de courant) ainsi que des défauts de communication avec d'autres régulateurs.

REMARQUE: Les alarmes du système sont toujours des alarmes du type critique.

Surveillance de seuil Min. / Max.

Dans le cas de points physiques et de pseudo points d'entrée analogiques, on pourra définir indépendamment entre elles deux limites hautes ("Lim Max 1" et "Lim Max 2") et basses ("Lim Min 1" et "Lim Min 2").

Possibilité de modifier ces limites en cours de fonctionnement. A chaque dépassement haut ou bas, le système déclenchera une alarme.

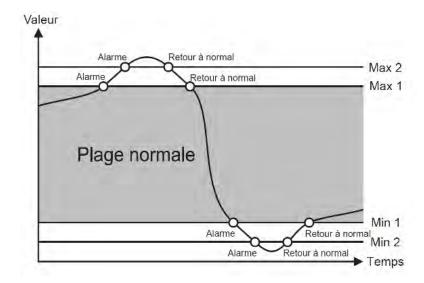
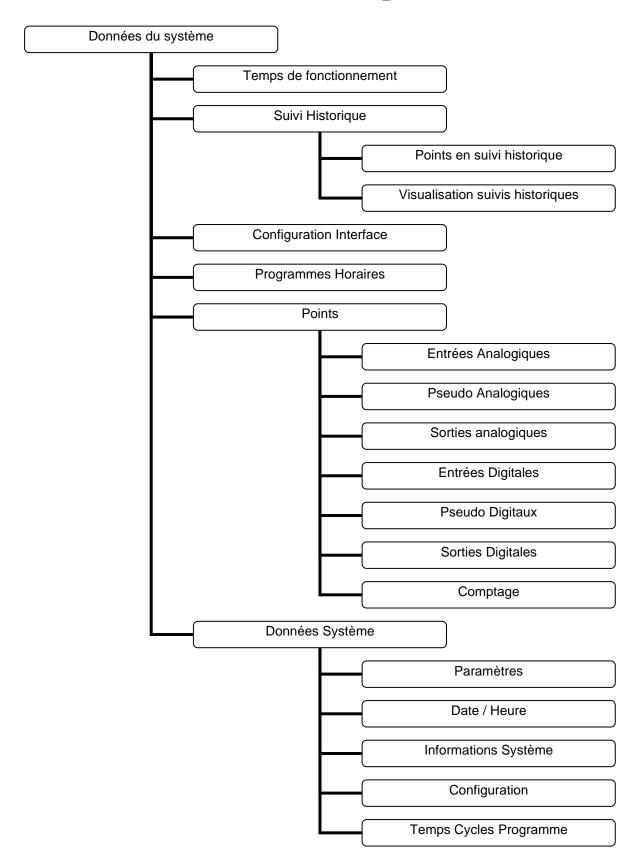


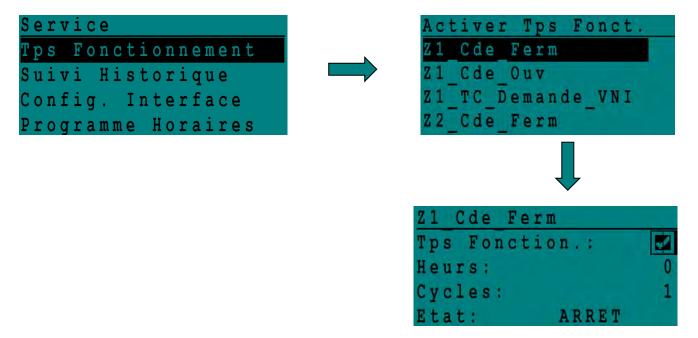
Figure 32 : Courbes seuil alarme limite min/max 1 et 2


En pressant la touche d'accès direct **ALARME**, on pourra afficher des informations concernant des alarmes historiques, des points actuellement en alarme, des alarmes critiques et non-critiques ainsi des alarmes se trouvant sur le Bus.

REMARQUE : La même chose que ci-dessus est valable aussi pour "toutes les alarmes", "alarmes critiques" et "alarmes non-critiques".

10. TOUCHE D'ACCES AU SYSTEME

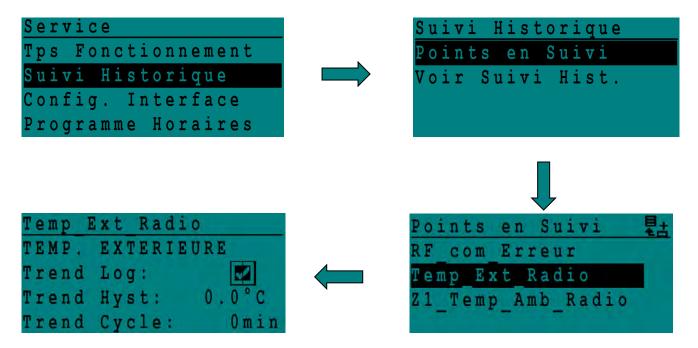
Par pression de la touche « ACCES AU SYSTEME », une liste avec l'en-tête correspondante apparaît.



10.1. TEMPS DE FONCTIONNEMENT

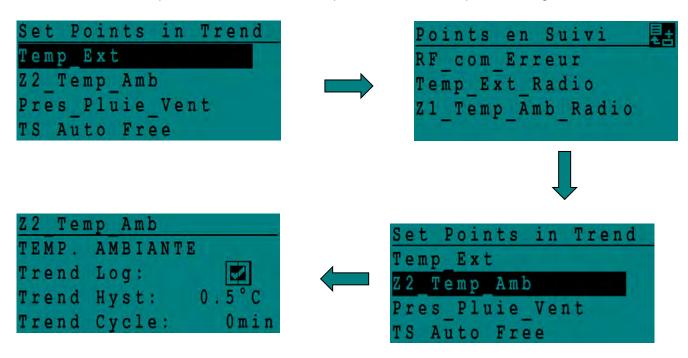
Après sélection de "Temps de fonctionnement" apparaît une liste avec en-tête correspondant.

Une saisie des heures de fonctionnement peut être exécutée pour des points tout ou rien (points physiques ou points pseudo). L'attribut "Temps de fonctionnement" donne le nombre total d'heures de fonctionnement. Les valeurs correspondantes ont une résolution de 1 minute.


Sont aussi indiqué le nombre de changement d'état (Switchs).

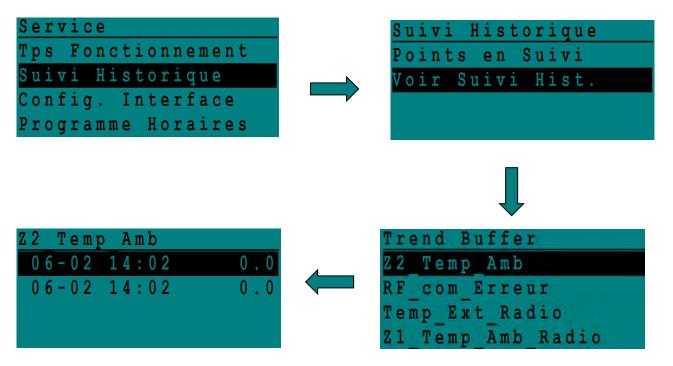
10.2. SUIVI HISTORIQUE

Points en suivi historique


Après sélection de "Suivi Historique" (Trend) apparaît une liste avec en-tête correspondant.

Pour rajouter un point en suivi historique :

- 1. A l'aide du bouton rotatif, placez-vous sur l'icône en haut à droite de l'écran,
- 2. Tous les points apparaissent sur l'écran suivant
- 3. Sélectionnez le point à mettre en suivi historique, et cochez le champ « Trend Log »

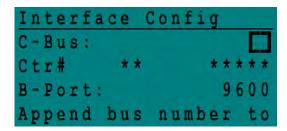


Visualisation Suivi historique

Après sélection de "Display Trend Buffer" apparaît une liste avec en-tête correspondant.

On pourra mémoriser jusqu'à 20 points max. (avec au total 200 valeurs). Amenez le curseur sur le point souhaité et confirmez.

Dans cet écran, on pourra afficher les entrées de mémoire de tendance allant avec le point concerné en procédant selon la méthode de navigation habituelle.

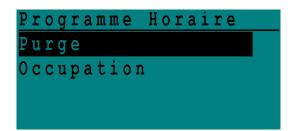


10.3. CONFIGURATION INTERFACE

Après la sélection de « Interface Config », vous accédez :

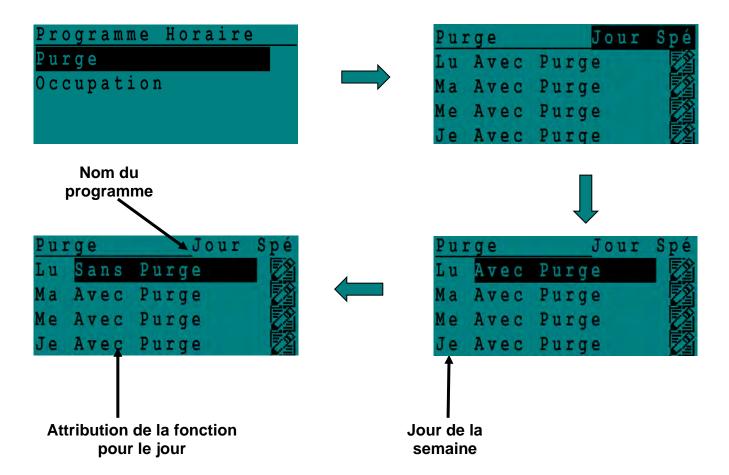
- L'activation de la communication C-Bus,
- Le numéro du régulateur (Ctr),
- La vitesse de transmission sur le Bus,
- La vitesse de communication avec le B-Port

10.4. PROGRAMME HORAIRE


Il est possible d'attribuer aux points de données appartenant à un programme horaire spécifique des valeurs et états (ex. "MARCHE" ou "ARRET").

Ces valeurs/états seront actives/inactives aux heures d'enclenchement ou d'arrêt que vous aurez spécifié. Des plages horaires différentes sont regroupées pour former des "programmes horaires."

REMARQUE : Il vous faut être en niveau d'accès 2 ou 3 pour éditer des valeurs, des états ou des points de commutation.

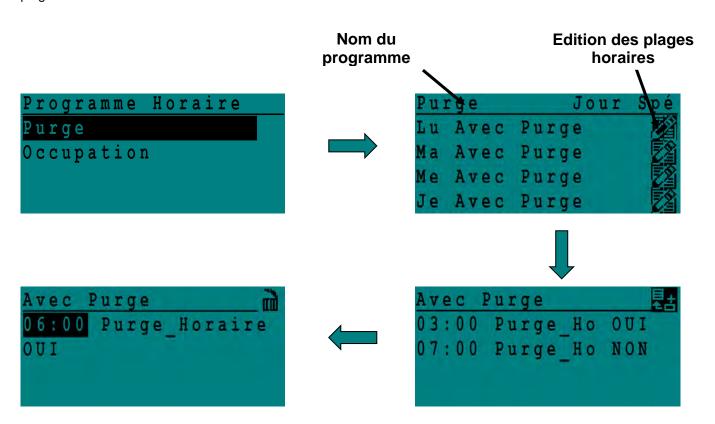


« Programme Hebdomadaire »

Après sélection du programme horaire concerné, apparait une liste avec en-tête correspondante (nom du programme horaire concerné) et l'affection des plages horaires de la semaine.

A l'aide du bouton rotatif, vous pouvez alors réaffecter une nouvelle plage horaire à un jour de la semaine.

Indépendamment de votre application et des données de configuration, cette liste contiendra toujours les 7 même entrées (c.-à-d. les 7 même paramètres, un par jour) à choisir. Il vous faudra donc naviguer avec la barre vers le bas pour pouvoir visualiser toutes les entrées.



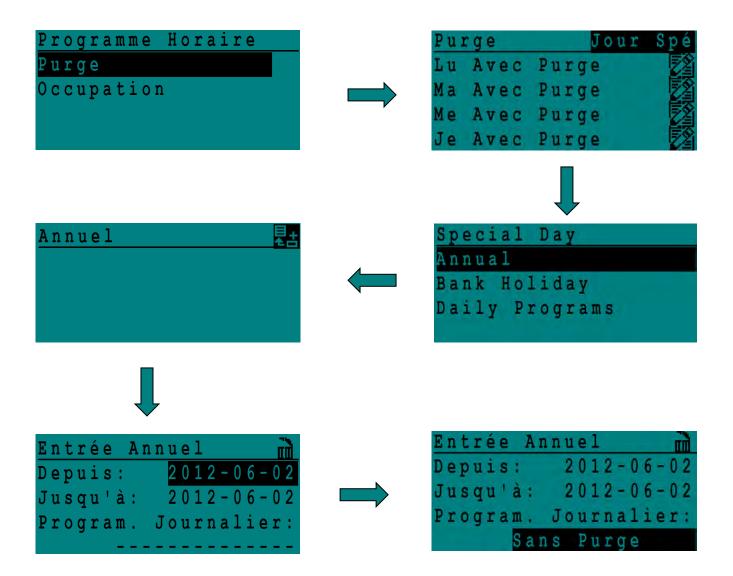
« Programme Journalier »

La sélection de la plage horaire "Programme journalier" se fait en sélectionnant l'icône plage hebdomadaire.

Programme Horaire : Purge

Les deux plages horaires par défaut sont les suivantes :

- Avec Purge,
- Sans Purge


Programme Horaire: Free Cooling

Les deux plages horaires par défaut sont les suivantes :

- Avec Free Cooling,
- Sans Free Cooling

« Programme Annuel »

Indépendamment de votre application et du programme horaire en question, cet écran contient toujours les deux mêmes lignes ("de:" et "à:"), vous permettant d'entrer la date initiale et finale de l'intervalle de temps auquel il faudra faire correspondre une plage horaire donnée.


Sur le dernier écran, nous pouvons voir l'affectation de la plage horaire « Sans purge » à la période du 02/06/2012 au 02/06/2012.

REMARQUE: les intervalles formant le programme annuel ne devront pas se chevaucher. Dans le cas contraire, le système ajuste la fin des différents intervalles aux débuts des intervalles suivants. Les intervalles entièrement situés à l'intérieur d'autres intervalles seront effacés.

« Programme Aujourd'hui »

Le programme "Aujourd'hui" permet à l'utilisateur de prolonger ou de raccourcir un intervalle de commutation. De telles interventions ne sont toutefois que provisoirement valables, ce qui signifie que le programme d'origine n'est pas affecté par ces modifications.

10.5. POINTS DE DONNEES

Au total, vous pouvez obtenir des informations à partir de trois types de points différents :

- Points physiques (formés de cinq types différents);
- Pseudo points (formés de deux types différents);
- Points globaux (formés de deux types différents).
- Points de comptage (par exemple comptage d'impulsions, entrée pour reset)

Différents types de points physiques

Les points physiques sont des entrées et sorties directement reliés à un appareil périphérique (par exemple sonde ou moteur). Le régulateur est en mesure de traiter un maximum de 38 points physiques.

Font partie des points physiques :

- Entrées analogiques (c.-à-d. des valeurs mesurées et fournies par du matériel périphérique);
- Sorties analogiques (c.-à-d. des signaux modulants ou trois-points générés par le régulateur luimême);
- Entrées tout ou rien (c.-à-d. des signaux d'états ou d'alarme provenant du matériel périphérique);
- Sorties tout ou rien (c.-à-d. des ordres provenant du régulateur lui-même)
- Signaux de comptage (c.-à-d. des entrées de reset ou d'impulsion provenant de matériels périphériques).

Types de pseudo points

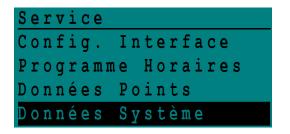
Il s'agit de points de logiciel.

En font partie:

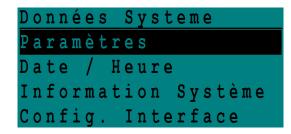
- Pseudo-points analogiques (par exemple calcul de valeurs internes, valeurs de consigne etc.)
- Pseudo-points en tout ou rien (par exemple calcul d'ordres internes, points alarme, dégommage pompe etc.).

Types de points globaux

Points mis à disposition sur le bus de communication entre automate


10.6. DONNEES SYSTEME

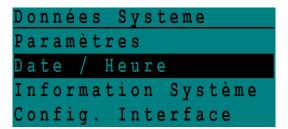
Paramètres


Après sélection de "Paramètres" apparaît une liste avec en-tête correspondant.

Indépendamment de l'application en cours ainsi que de vos données de configuration, cette liste contient toujours les trois mêmes entrées à partir desquelles vous pourrez choisir :

- "Liste:", numéro du fichier paramètre,
- "Numéro :", position dans la liste du paramètre,
- "Valeur", la valeur du paramètre en question. Au cas où le système précise l'unité de mesure (par exemple "sec" ou "°C"), celle-ci s'affiche dans le coin supérieur droit.

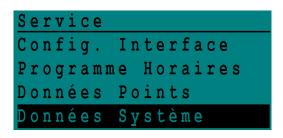

```
Paramètres
Fichier paramètre 0
Paramètre N°: 1
Valeur paramètre:
```



Horloge Système / Heure d'été

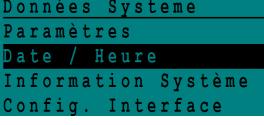
Après sélection de "Horloge système" apparaît un écran avec en-tête correspondant.

• Date / Heure: Permet de modifier la date et l'heure servant de base au régulateur


```
      Date / Heure


      Date:
      2012-06-02

      Heure:
      08:35


      Format:
      2009-12-31

      Changement Heure été
```

Le début et la fin de l'heure d'été sont à actualiser chaque année. Pour ce faire, amenez le curseur sur "heure d'été" et confirmez. L'écran suivant apparaît.

Changement Heure été

Sunday of month

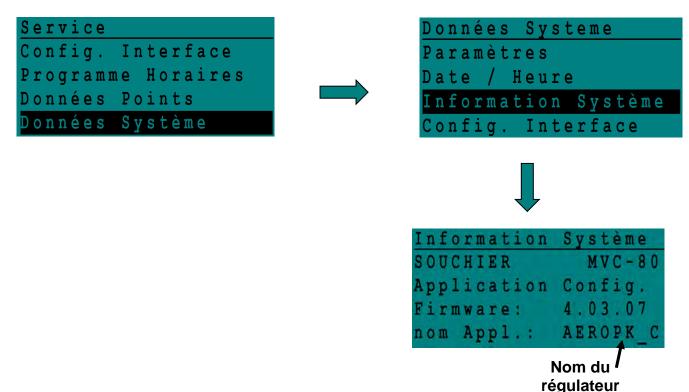
Début été: Last Mar
Fin été: Last Oct

 Date / Heure

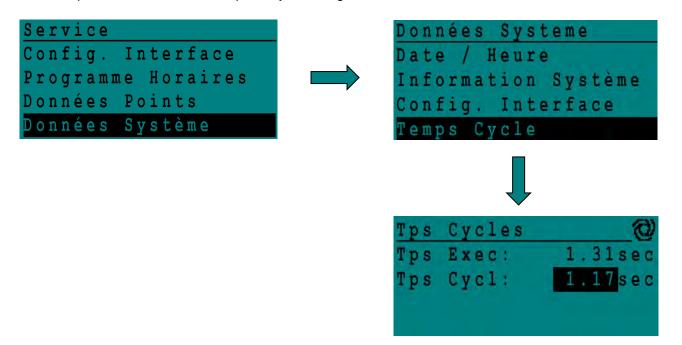
 Date:
 2012-06-02

 Heure:
 08:17

 Format:
 2009-12-31


 Changement Heure été

Informations système


Après sélection de "System Info", il apparaît une série d'écrans. Le premier écran affiche le nom du régulateur et en dessous la version du logiciel.

Les autres écrans affichent les données de configuration.

Temps cycles Programme

Ce menu permet de connaître le temps de cycle du régulateur.

11. ENTRETIEN APPAREIL

11.1. PRINCIPE

Il est important d'entretenir l'Adiabox régulièrement afin de garantir le maintien des performances et la longévité de l'appareil.

Lors de l'intervention il faut réaliser une série de vérification du bon fonctionnement de l'appareil :

- Démontage des panneaux verticaux
- Vérification du taux d'encrassement de l'appareil
- Besoin pièces à changer (électrovanne, filtre à cartouche, ...)
- Protection des parties électriques
- Nettoyage des panneaux d'échangeurs et des moustiquaires
- Nettoyage du réservoir et des conduits d'écoulement
- Nettoyage de l'électrovanne de vidange, vérification du joint d'étanchéité (changement le cas échéant), vérification du bon fonctionnement du ressort
- Nettoyage de la pompe de circulation
- Nettoyage des répartiteurs d'eau
- Nettoyage et vérification du bon fonctionnement du capteur de niveau d'eau
- Resserrage des connections des bornes de l'automate
- Vérification du fonctionnement du ventilateur à différentes vitesses, de l'électrovanne de remplissage du bac, de la pompe de circulation, de l'électrovanne de vidange, du capteur de niveau d'eau
- Remontage des panneaux
- Remise en service de l'installation

Si nécessaire, dans un deuxième temps, selon le retour client sur son expérience de fonctionnement, il faut reprogrammer l'automate afin qu'il s'adapte à ses besoins.

Rappel: Un rafraîchisseur encrassé implique:

- Une surconsommation importante de l'appareil
- Une usure prématurée de l'appareil
- Un risque de panne plus important

Les locaux qui vous sont confiés doivent être restitués dans l'état où vous les avez trouvés.

En cas de panne :

- Vérifiez le paramétrage du rafraîchisseur
- Vérifiez la date du dernier entretien du rafraîchisseur, elle doit date d'un an maximum.
- · Hors tension :
 - Vérifiez l'état des composants du rafraîchisseur et leur taux d'encrassement.
 - Vérifiez qu'aucun débris ne perturbent le fonctionnement des composants
- Vérifiez la tension aux bornes de l'automate et aux bornes de chaque composant (chapitre 7.4/)

Si toutes ces étapes ne permettent pas la remise en marche du rafraîchisseur, contactez notre service SAV : sav@souchier-boullet.com

11.2. PROCEDURE

La fréquence de l'entretien s'effectue régulièrement et peut dépendre de :

- la qualité de l'eau d'alimentation (en particulier de la concentration en minéraux)
- la qualité de l'air aspiré par l'appareil.
- la fréquence d'utilisation

En règle générale, il faut prévoir :

- 1 entretien au printemps pour les appareils fonctionnant uniquement pendant la période chaude
- 1 entretien tous les 6 mois pour les appareils fonctionnant toute l'année

En hiver, si l'appareil n'est pas utilisé, un hivernage est fortement conseillé. Il consiste à couper l'alimentation d'eau, purger les tuyauteries d'alimentation d'eau et ajouter une housse de protection pour éviter les infiltrations d'eau et l'entrée d'air froid dans le bâtiment.

Préparation de l'Adiabox pour l'entretien

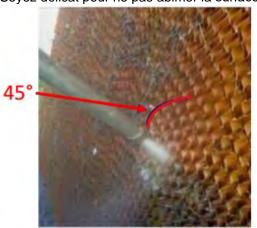
- Déplacez les objets potentiellement gênant à l'entretien du matériel.
- Protégez les éléments sensibles des éclaboussures autour du rafraîchisseur.
- Veillez à ce que l'escabeau, échelle, échafaudage, ou autre soient en bon état et bien positionnés (stabilité, proximité, accessibilité...).
- Vérifiez que tous les outils soient propres et à disposition;
- Préparez la bâche de protection du ventilateur pour éviter toute chute de produit ou objet dans la gaine.
- Avant chaque intervention, se munir d'outils et consommables tel que : pulvérisateur, boite à outils, gants, masque, chiffons, papier Th, multimètre, produit désinfectant/dégraissant biodégradable et sans additif chimique.

Isoler le rafraichisseur

- Isolez électriquement l'appareil en utilisant le sectionneur de proximité situé sous le réservoir, puis disjoncter l'appareil depuis le tableau électrique pour commencer les opérations de nettoyage.
- Coupez la vanne d'arrivée d'eau en amont, alimentant le rafraichisseur en eau.
- Retirez les quatres panneaux :
 - Retirez les 4 clips assurant le maintien de panneaux latéraux.
 - Tirez le panneau vers le haut, puis tirez-le vers vous.
 - Une fois le haut du panneau sorti, retirez l'échangeur en dévissant les vis qui maintiennent l'échangeur.

Attention :

- Veillez à ne pas endommager le haut des échangeurs en cellulose.
- Ne jamais poser le pied dans l'appareil pour tenter de pénétrer dans le module adiabatique.
- Assurez-vous de l'arrêt complet du ventilateur avant d'intervenir sur le rafraîchisseur.



Nettoyage de l'Adiabox

Nettoyage des échangeurs et des panneaux

Nettoyez tous les côtés de l'échangeur <u>à l'aide d'un jet d'eau basse pression pour ne pas les abîmer</u> et de produit. Le nettoyage de ses alvéoles se fait avec une position du pistolet de pulvérisation à 45° du panneau dans le sens du passage de l'air.

Soyez délicat pour ne pas abimer la surface de l'échangeur.

Nettoyez les panneaux en plastique et les moustiquaires de l'appareil de la même façon. Remontez les 4 échangeurs sur les panneaux en prenant garde à ne pas inversé la disposition haut/bas.

Si l'appareil dispose de moustiquaires :

- Retirer la moustiquaire de chaque panneau
- Nettoyer avec un jet d'eau basse pression
- Vérifier que la moustiquaire n'est pas déchirée
- Repositionner la moustiquaire

Note : Si on observe une grande quantité de minéraux sur les surfaces en contact avec l'eau, le réglage de la déconcentration doit être modifié sur l'automate de régulation (voir l'arborescence des paramètres automate sur ce manuel, chapitre 7.16/).

Les échangeurs en cellulose doivent être remplacés si :

- Leur structure est endommagée
- Les polluants à leur surface ne peuvent plus être retirés à l'aide d'un jet d'eau
- Ils sont entartrés par les minéraux (une fois les échangeurs remplacés, changer le réglage de la déconcentration en minéraux afin de préserver les nouveaux échangeurs)
- Leur efficacité est devenue trop faible

Remontez les 4 échangeurs sur les panneaux en prenant garde à ne pas inversé la disposition haut/bas.

Nettoyage du réservoir et de l'électrovanne de vidange

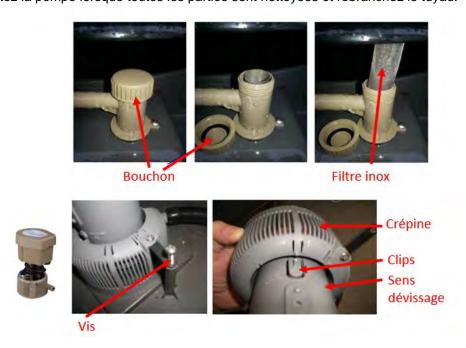

Nettoyez tout le réservoir à l'aide du pulvérisateur. L'évacuation des saletés se fera par le trou d'évacuation de l'électrovanne de vidange.

Dévissez le passe-cloison de l'électrovanne de vidange qui se trouve sous le réservoir. Retirez l'électrovanne de vidange du réservoir ce qui permettra de vidanger l'ensemble du réservoir.

Vérifiez l'état joint d'étanchéité entre le réservoir et l'électrovanne. Si besoin changer le joint, il est préconiser de le changer tous les deux ans.

Vérifiez le fonctionnement du ressort sur l'électrovanne de vidange en le pressant avec le doigt. S'il est cassé, remplacer l'électrovanne.

Remontez l'électrovanne avec le joint et le passe-cloison.


Nettoyage du filtre d'arrivée d'eau et de la pompe

Dévissez le bouche en plastique du filtre, sortez et nettoyer le filtre inox à l'aide du pulvérisateur et du produit. Assurez vous de la vanne d'arrivée d'eau est bien fermée.

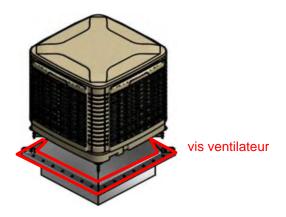
Remettre le filtre et revisser le bouchon lorsque l'opération est terminée.

Dévissez les vis de chaque côté de la pompe pour nettoyer la pompe : carter et crépine.

Remontez la pompe lorsque toutes les parties sont nettoyées et rebranchez le tuyau.

Nettoyage des répartiteurs

Démontez la vis de fixation au centre des répartiteurs et inclinez les répartiteurs pour les décrocher de leurs supports.


Nettoyez les répartiteurs à l'aide du produit et du pulvérisateur.

Remontez le répartiteurs lorsque le nettoyage est terminé. Positionnez correctement les fixations supports et remettre la vis centrale.

Vérification serrage du ventilateur

Vérifier le serrage des écrous du ventilateur tout autour de l'Adiabox. Cette vérification doit être effectuée obligatoirement 1 fois par an.

Paramétrage de l'Adiabox

Lorsque le nettoyage est terminé, réalimenter l'appareil en électricité et en eau. Commuter le disjoncteur principal du tableau électrique et le sectionneur principal sur ON mais laissez le commutateur du ventilateur sur OFF.

Resserrer les connections aux bornes de l'automate

Reportez vous à la partie régulation, pour paramétrer le rafraîchisseur si besoin (voir l'arborescence des paramètres automate sur ce manuel, chapitre 7.16/ et 7.17/). Activez les composants et testez leur bon fonctionnement

Lorsque toutes les opérations ont été effectués

- Refermez le coffret de l'automate
- Réalimentez le sectionneur du ventilateur
- Réintégrer les panneaux avec les échangeurs fixés sur l'Adiabox
- Fixer correctement tous les clips sur chacun des panneaux de l'Adiabox (4 clips par panneaux obligatoire).
- Réalimenter le rafraîchisseur en eau

ANNEXE I - TABLE D'ECHANGES MODBUS

La communication Modbus s'effectue en utilisant les bornes 29 et 30 (Modbus A et Modbus B) Pour écrire sur les registres depuis une GTB/GTC, il faut régler le paramètre Presence_GTC à la valeur OUI.

Paramètres de communication					
Mode de communication	Modbus Esclave				
Mode de transmission	RTU				
Vitesse	38 400 Bit/s				
Parité	Sans				
Nb bit Stop	1 Bit				
Adresse de l'automate	2				
Plage d'adresse autorisée	1 à 247				

	Types de données supportées
	BOOL
•	INT16
-	UNINT16
•	INT32
•	UINT32
•	FLOAT

Code fonction Mode	ous supportés
Lecture (Read Holding Register)	03
Ecriture (Write Single Register)	06

Mode de vérification des erreurs
Vérification des parités : Sans parité, Pair,
Impair Vérification Frame : CRC (Cyclical redundancy
checking)

Code d'exception supportés				
Illegal function	01			
Illegal data adress	02			
Illegal data value	03			
Slave device failure	04			

Couche physique (Physical Layer)						
Vitesse de communication	9.6, 19.2, 38.4, 57.6, 76.8 et 115.2 KBaud					
Nombre maximum d'appareil	32					
Raccordement	Liaison série RS485 (EIA- 485) (avec commun additionnel)					
Résistance de terminaison	110 Ω					

	Noms Clés	Désignation	Unité	Valeur Défaut	R ou R/W	Reg Modbus	Туре
	Synth_Temp_Ext	Synthèse Température Extérieure	°C	-	R/W	1	int16
	Synth_Hygro_Ext	Synthèse Hygrométrie Extérieure	%Hr	-	R/W	2	int16
	Synth_Temp_Amb	Synthèse Température Ambiante	°C	-	R/W	3	int16
	Synth_Hygro_Amb	Synthèse Hygrométrie Ambiante	%Hr	-	R/W	4	int16
	Synth_Temp_Souff	Synthèse Température Soufflage	°C	-	R/W	5	int16
	Synth_Hygro_Souff	Synthèse Hygrométrie Soufflage	%Hr	-	R/W	6	int16
	Niveau_Cuve	Niveau d'eau présente dans la cuve	mm	-	Read Only	7	int16
	Debit_Ventilation	Débit de ventilation	Mètre cube		Read Only	8	int16
	MarcheArret	Marche Arret / Réarmement	1:Oui / 0:Non		Read Only	9	Bool
	Auto_Freecooling	Autorisation de fonctionnement en Freecooling	1 : Active / 0 : Désactive	1 : Active	R/W	10	Bool
	Auto_Nightcooling	Autorisation de fonctionnement en Nightcooling	1 : Active / 0 : Désactive	1 : Active	R/W	11	Bool
ral	Auto_Adia_Occup	Autorisation de fonctionnement Adiabatique en occupation	1 : Active / 0 : Désactive	1 : Active	R/W	12	Bool
Général	Auto_Adia_InOccup	Autorisation de fonctionnement Adiabatique en inoccupation	1 : Active / 0 : Désactive	1 : Active	R/W	13	Bool
	Auto_Chauffage	Autorisation de fonctionnement chauffage	1 : Active / 0 : Désactive	0 : Désactive	Read Only	14	Bool
	Mode_Fonctionnement	Mode de fonctionnement en cours			Read Only	15	Bool
	PresencePluieVent	Présence de pluie et ou de vent	1 : Détection/ 0 : Non	-	Read Only	52	Bool
	Occup_Horaire_GTC	Période occupation GTC	0 :Non / 1 :FreeCooling / 2 :Night-Cooling / 3 :Auto	3 : Auto	R/W	53	Int16
	Synth_Occup	Synthèse Horaire occupation	1:Oui / 0:Non	-	Read Only	54	Bool
	Synth_Purge_Hor	Synthèse Horaire occupation Night- Cooling	1:Oui / 0:Non	-	Read Only	55	Bool
	Periode_VNI_GTC	Période VNI GTC	0 : HIVER / 1 : ETE / 2 : AUTO	2 : Auto	R/W	56	Bool
	Synth_Periode_VNI	Synthèse période VNI	1 : ETE / 0 : HIVER	-	Read Only	57	Bool

	Noms Clés	Désignation	Unité	Valeur Défaut	R ou R/W	Reg Modbus	Туре
	PC_Temp_Amb	Consigne T°C Ambiante Freecooling (occupation)	°C	23°C	R/W	16	int16
	PC_Bas_Amb	Consigne T°C Ambiante Nightcooling (inoccupation)	°C	19°C	R/W	17	int16
	PC_Adia_Conf	Consigne T°C Ambiante Adiabatique Confort (occupation)	°C	24°C	R/W	18	int16
GNES	PC_Adia_Eco	Consigne T°C Ambiante Adiabatique Economique (Inoccupation)	°C	28°C	R/W	19	int16
ISI	PC_Chauffage_Conf	Consigne T°C Ambiante Chauffage Confort (Occupation)	°C	19°C	R/W	20	int16
8	PC_Chauffage_Eco	Consigne T°C Ambiante Chauffage Economique (Inoccupation)	°C	16°C	R/W	21	int16
	PC_Haut_Hr_Ext	Seuil Haut Hygrométrie extérieure	%Hr	75%	R/W	22	int16
	PC_Haut_Hr_Amb	Seuil Haut Hygrométrie ambiate	%Hr	75%	R/W	23	int16

	Noms Clés	Désignation	Unité	Valeur Défaut	R ou R/W	Reg Modbus	Туре
	Vmin_Ventil	Vitesse minimal du ventilateur	%	20	R/W	26	int16
	Vmax_Ventil	Vitesse maxiaml du ventilateur	%	100	R/W	27	int16
ONS	Tps_Post_Ventil	Temps de la post ventilation	min	-	R/W	28	int16
H	Tps_Min_Ventil	Temps minimum de fonctionnement de la ventilation	min	-	R/W	29	int16
N N	BP_Ventil	Bande passante	К	-	R/W	30	int16
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	Integral_Ventil	Action Integral	sec	-	R/W	31	int16
	Hysteresis_Ventil	Hysteresis	К	100	R/W	32	int16
	Mode_Chauffage	Mode de fonctionnement du chauffage	1 : Proportionnelle / 0 : TOR	0 :TOR	R/W	33	int16

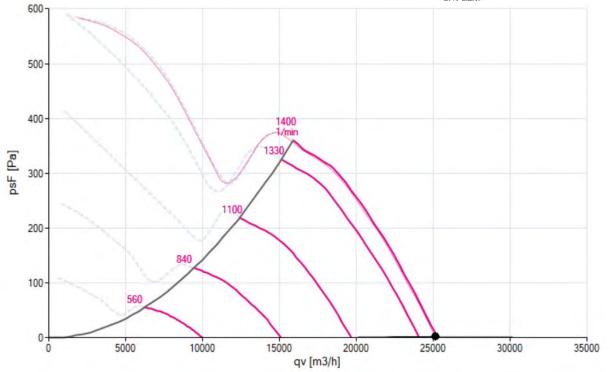
	Noms Clés	Désignation	Unité	Valeur Défaut	R ou R/W	Reg Modbus	Туре
EAU	Tps_Rincage	Temps de rinçage	sec	5	R/W	34	int16
Ш	Tps_VidangeR	Temps vidange après rinçage	sec	10	R/W	35	int16
DE L'	Tps_Maxi_Vidange	Temps maximum de vidange	min	10	R/W	36	int16
OND	Cycle_Deconc	Nombre de cycle avant déconcentration	min	60	R/W	37	int16
STIC	Tps_Vidange_Evap	Vidange Après Evaporation	min	3	R/W	38	int16
GES	Tps_Maxi_Evaporatio	Temps maximale d'évaporation	heures	12	R/W	39	int16

	Noms Clés	Désignation	Unité	Valeur Défaut	R ou R/W	Reg Modbus	Туре
	VNI_Tps_ouv	Temps d'ouverture des ouvrants VNI	sec	60	R/W	42	int16
	VNI_Tps_Ferm	Temps de fermeture des ouvrants VNI	sec	60	R/W	43	int16
	VNI_Mode	Mode de pilotage des ouvrants		1	R/W	44	bool
Z	VNI_Tps_Controle	Temps entre 2 commandes de VNI	Min	10	R/W	45	int16
5	VNI_Ouv_Max_Free	Ouverture maxi pour Free Cooling	%	100	R/W	46	int16
	VNI_Ouv_Max_Purge	Ouverture maxi pour Night Cooling	%	50	R/W	47	int16
	VNI_Ouv_Max_Derog	Ouverture maxi pour Dérogation	%	100	R/W	48	int16
	VNI_Ouv_Max_Free_Ch	Ouverture maxi pour Free Heating	%	100	R/W	49	int16

	Noms Clés	Désignation	Unité	Valeur Défaut	R ou R/W	Reg Modbus	Туре
	Défaut_PPCirc	Défaut de la Pompe de circulation	1 : Alarme /0 : Normal	-	Read Only	34	int16
	Défaut Remplissage	Défaut de remplissage de la cuve	1 : Alarme /0 : Normal	-	Read Only	35	int16
ants	Défaut Trop Plein	Défaut Trop plein de la cuve	1 : Alarme /0 : Normal	-	Read Only	36	int16
Défa	Défaut VidangEvac	Défaut vidange/évacuation de l'eau	1 : Alarme /0 : Normal	-	Read Only	37	int16
-	Défaut_Capteur	Défaut de l'un des capteurs	1 : Alarme /0 : Normal	-	Read Only	38	int16
	Synth_Defaut	Synthèse défaut (Présence de au moins 1 défaut)	1 : Alarme /0 : Normal	-	Read Only	39	int16

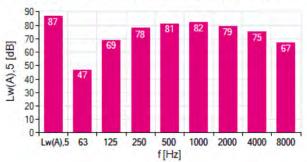
ANNEXE II - PARAMATRES MISE EN SERVICE

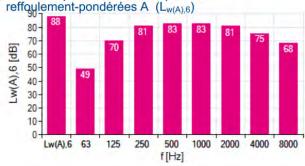
Noms clés	Descriptif	Valeur par défaut	Zone 1	Zone 2	Zone 3	
Zx_Auto_Free	Autorisation Free-Cooling	Active				
Zx_Auto_FreeCh	Autorisation Free-Heating	Désactive				
Zx_Auto_Purge	Autorisation Night Cooling	Active				
Zx_PC_Temp_Amb	Point de consigne Température Ambiante	23 °C				
Zx_PC_Bas_Amb	Limite basse de la Température Ambiante	19 °C				
	Mode de pilotage VNI					
Zx_Mode	Pas d'ouverture	SADAP				
Zx_Pas_Ouv	Tps d'ouverture des ouvrants	20 %				
Zx_Tps Ouv	Tps de fermeture des	18 sec				
Zx Tps_Ferm	ouvrants	35 sec				
Zx_Ouv_Max_Free	Position ouverture maximum en Free-Cooling	100 %				
Zx_Ouv_Max_Purge	Position ouverture maximum en Night-Cooling	50 %				
Zx_Ouv_Max_Derog	Position ouverture maximum en mode	100 %				
Zx_Ouv_Max_FreeCh	dérogation	20 %				
Tps_2_Controles_VNI	Position ouverture maximum en Free-Heating					
	Tps entre 2 contrôles de la gestion ventilation					
Sens_Contact_TC_Au	Sens du contact auxiliaire	NF				
Ouv_GTC_Pr_Hr_VNI	Ouverture sur demande GTC à l'intérieur du programme horaire d'occupation	SANS				
Debut_Periode_VNI	Début et fin de période de ventilation naturelle	501				
Fin_Periode_VNI	501 : 1 mai 1015 : 15 octobre	1015				



ANNEXE III - VENTILATEUR PALES ALUMINIUM

Données ventilateur

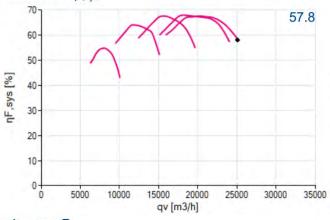

moteur		ECblue	
tension principale	14.	3~ 400V 50Hz	
température ambiante (t _r)	°C	55	
rendement η _{statA}	%	54,4	
Rendement Nactual Ntarget	%	57,6 40	
classe ErP		2015 Variateur EC integré	
grille influence		without	
classe-SFP valeur SFP (P _{SFP})	- Ws/m ³	1 333	
débit (q _V)	m³/h	25173	
pression, stat. (psF) tot. (pF)	Pa	2 192	
puissance absorbée (P _{sys})	W	2325	
rendement system, stat. $(\eta_{sF,sys})$ tot. $(\eta_{F,sys})$	%	0.6 57.8	
vitesse ventilateur (n) max. (n _{max})	1/min	1392 1400	
vitesse ventilateur, valeur fixée (%n _{max})	%	99	
frequence (f _{BP}) (f _{max})	Hz	50 60	
tension au point de fonctionnement (U DP)	V	400	
intensité au point de fonctionnement (I DP)	Α	3.56	
niveau sonore, coté aspiration (L _{w(A),5}) (L _{w,5})	dB	87 90	
niveau sonore, coté refoulement (L $_{w(A),6}$) (L $_{w,6}$)	dB	88 92	
poids (m _{pr})	kg	35.1	

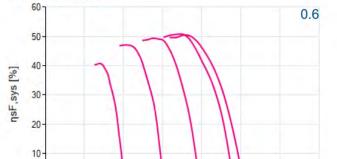

PF:PF_00; BR:BR_52; q_V :25000 m³/h; p_{sF} :1 Pa; mains:3~ / 400V / 50 Hz; t_i :20 °C; taille:710 mm; p:1.16 kg/m³; SToi:+-20 %; BF:V-L(ZN)

niveau de puissance acoustique côté aspiration-pondérées A (Lniveau de puissance acoustique côté reffoulement-pondérées A (Lw(A),6)

1 ZN071-ZIL.GL.V7P4									
f [Hz]	sum	63	125	250	500	1000	2000	4000	8000
L _{w(A),5}	87	47	69	78	81	82	79	75	67
L _{w,5}	90	73	83	85	84	82	78	74	68

	sum								
L _{w(A),6}	88	49	70	81	83	83	81	75	68
L _{w,6}								74	


rendement η_{sF,sys}


0-

5000

10000

rendement $\eta_{F,sys}$

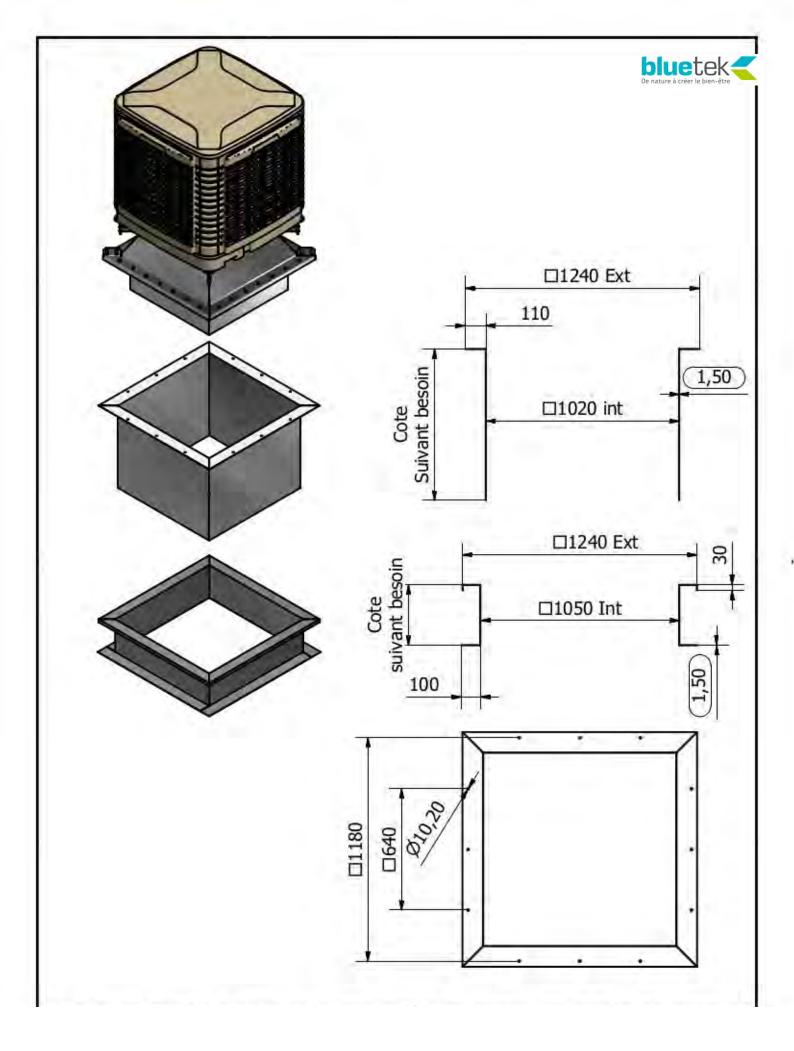
15000

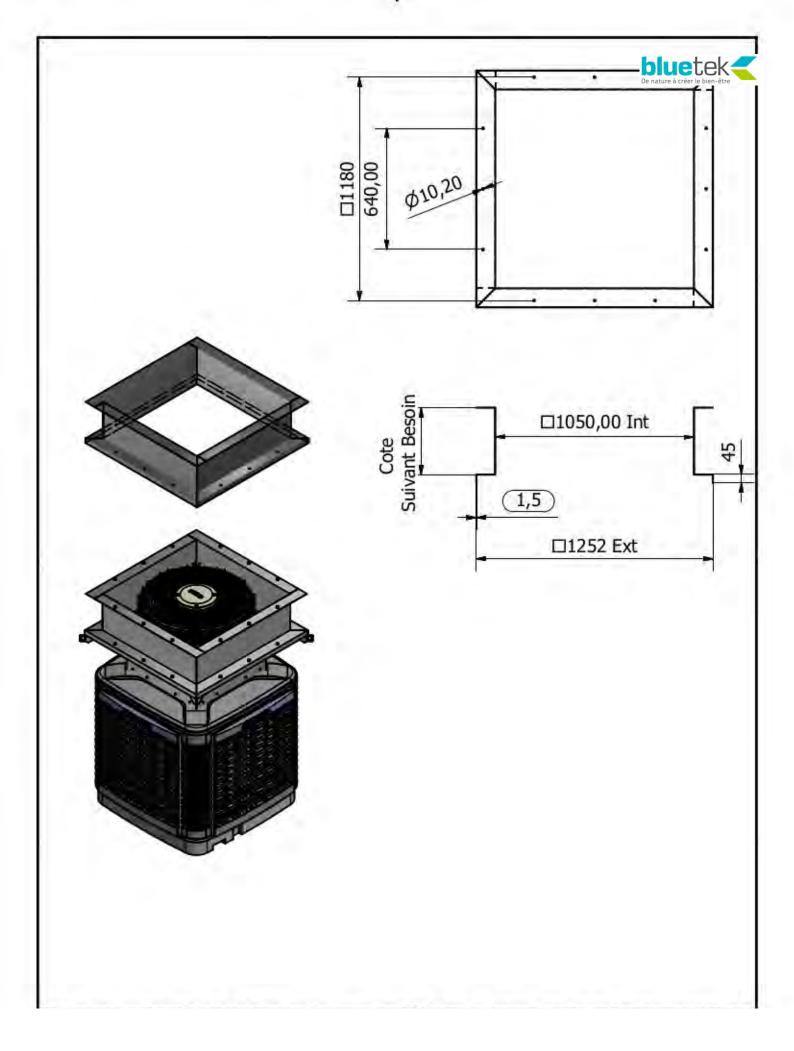
qv [m3/h]

20000

25000

30000


35000


puissance P_{sys}

| Plans | ADIABOX V2 WFP 31 000

Z.I. Nord les Pins 37230 LUYNES Tél. 02 47 55 37 00 - Fax 02 47 55 37 01

www.bluetek.fr