Data sheet

Seated valves (PN 16)
 VRG 2 - 2-way valve, external thread
 VRG 3 - 3-way valve, external thread

Description

VRG valves provide a quality, cost effective solution for most water and chilled applications.

The valves are designed to be combined with following actuators:

- With $\operatorname{AMV}(\mathrm{E}) 335, \operatorname{AMV}(\mathrm{E}) 435$ or $\operatorname{AMV}(\mathrm{E}) 438$ SU actuators.
- With AMV(E) 25,25 SU/SD, 35 actuators (with adapter 065Z0311).

Combinations of actuators is evident under section "Dimension".

Features:

- Bubble tight design
- Snap mechanical connection together with AMV(E) 335, AMV(E) 435
- Dedicated 2-port valve
- Suitable for diverting applications (3-port)

Main data:

- DN 15-50
- $\mathrm{k}_{\text {vs }} 0.63-40 \mathrm{~m}^{3} / \mathrm{h}$
- PN 16
- Temperature:
- Circulation water / glycolic water up to 50% : $2\left(-10^{*}\right) \ldots 130^{\circ} \mathrm{C}$
* At temperatures from $-10^{\circ} \mathrm{C}$ up to $+2^{\circ} \mathrm{C}$ use stem heater
- Connections:
- External thread

Ordering

Example:
3-way valve; DN 15 ; $k_{\text {vS }} 1.6$;PN 16; $T_{\text {max }} 130^{\circ} \mathrm{C}$; ext. thread
$\begin{array}{ll}-1 \times \quad \text { VRG } 3 \text { DN } 15 \text { valve } \\ & \text { CodeNo. } 065 Z 0113\end{array}$ Code No.: $065 Z 0113$

Option:

- 3x Tailpieces

Code No.: $065 Z 0291$

2 \& 3-way valves VRG (external thread)

Picture	DN	$\begin{gathered} \mathbf{k}_{\mathrm{vs}} \\ \left(\mathrm{~m}^{3} / \mathrm{h}\right) \end{gathered}$	Code No.	
			VRG 2	VRG 3
		0.63	065Z0131	$065 Z 0111$
		1.0	065Z0132	$065 Z 0112$
	15	1.6	065Z0133	$065 Z 0113$
		2.5	065Z0134	065Z0114
		4.0	065Z0135	065Z0115
	20	6.3	$065 Z 0136$	$065 Z 0116$
	25	10	$065 Z 0137$	$065 Z 0117$
	32	16	065Z0138	$065 Z 0118$
	40	25	065Z0139	$065 Z 0119$
	50	40	065Z0140	065Z0120

Data sheet
Seated valves VRG 2, VRG 3

Ordering (continued)

Accessories - Tailpieces

Type		DN	Code No.
Tailpiece ${ }^{1)}$	Rp $1 / 2$	15	065Z0291
	Rp 3/4	20	065Z0292
	Rp 1	25	065Z0293
	Rp 11⁄4	32	065Z0294
	Rp 11⁄2	40	$065 Z 0295$
	Rp 2	50	065Z0296

${ }^{1)} 1$ tailpiece internal thread for VRG ext. thread (Ms - CuZn39Pb3)

Service kits

Type	DN	Code No.
Stuffing box	15	$\mathbf{0 6 5 Z 0 3 2 1}$
	20	$\mathbf{0 6 5 Z 0 3 2 2}$
	25	$\mathbf{0 6 5 Z 0 3 2 3}$
	32	$\mathbf{0 6 5 Z 0 3 2 4}$
	$40 / 50$	$\mathbf{0 6 5 Z 3 2 5}$

Accessories - Adapter \& stem heater

Type	for actuators	Code No.
Adapter	AMV(E) 25/35	$\mathbf{0 6 5 Z 0 3 1 1}$
Stem heater	$\mathrm{AMV}(\mathrm{E}) 335 / 435$	$\mathbf{0 6 5 Z 0 3 1 5}$
	$\mathrm{AMV}(\mathrm{E}) 25(\mathrm{SU} / \mathrm{SD}) / 35^{2)}$	$\mathbf{0 6 5 B 2 1 7 1}$

${ }^{2)}$ only in a combination with adapter $065 Z 0311$

Technical data

Nominal diameter	DN	15					20	25	32	40	50
$\mathrm{k}_{\text {vs }}$ value	$\mathrm{m}^{3} / \mathrm{h}$	0.63	1.0	1.6	2.5	4.0	6.3	10	16	25	40
Stroke	mm	10							15		
Control range		30:1	50:1				100:1				
Control characteristic		LOG: port A-AB; LIN: port B-AB									
Cavitation factor z		≥ 0.4									
Leakage		A - AB bubble tight design									
		$B-A B \leq 1.0 \%$ of k_{vs}									
Nominal pressure	PN	16									
Max. closing pressure	bar	Mixing: 4									
		Diverting: 1									
Medium		Circulation water / glycolic water up to 50 \%									
Medium pH		Min. 7, Max. 10									
Medium temperature	${ }^{\circ} \mathrm{C}$	2 (-10 1)) ... 130									
Connections		ext. thread									
Materials											
Valve body		Grey cast iron EN-GJL-250 (GG-25)									
Valve stem		Stainless steel									
Valve cone		Brass									
Stuffing box sealing		EPDM									

1) At temperatures from -10 up to $+2{ }^{\circ} \mathrm{C}$ use stem heater

Pressure temperature diagram

Maximum allowed operating pressure as a function of medium temperature.

Valve characteristics

Installation

Note:

Install a strainer upstream of the valve (e.g. Danfoss FVR/FVF)

Valve characteristics log (2-way)

Valve characteristics log/lin (3-way)

Valve mounting

Before valve mounting the pipes have to be cleaned and free from abrasion. Valve must be mounted according to flow direction as indicated on valve body except by diverting, where valve can be mounted oposite to the flow direction (flow oposite to indication on the valve body). Mechanical loads of the valve body caused by the pipes are not allowed. Valve should be free of vibrations as well.
Installation of the valve with the actuator is allowed in horizontal position or upwards. Installation downwards is not allowed.

Always install the valve with the arrow on the body in the same direction as the flow. In order to avoid turbulence, which will affect the measuring accuracy, it is recommended to have a straight length of pipe up and down stream from the valve as shown (D - diameter of pipe).

Fig. 1: Mixing or diverting connection

Fig. 2: Mixing valve used in mixing application

Fig. 3: Mixing valve used in diverting application

Fig. 4: Diverting valve used in diverting application

Mixing or diverting connection
3 -way valve can be used either as mixing or diverting valve (fig.1).
If 3 -way valve is installed as mixing valve meaning that A and B ports are inlet ports, and $A B$ port is outlet port it can be installed in mixing (fig.2) or diverting application (fig.3).

3 -way valve can be also installed as diverting valve in diverting application (fig.4) meaning that $A B$ port is inlet and A and B ports are outlets.

Note:

Maximal closing pressure for mixing and diverting installation are not the same. Please refer to values stated in Technical data section.

Sizing

Example

Design data:

Flow rate: $6 \mathrm{~m}^{3} / \mathrm{h}$
System pressure drop: 55 kPa
Locate the horizontal line representing a flow rate of $6 \mathrm{~m}^{3} / \mathrm{h}$ (line A-A). The valve authority is given by the equation:
Valve authority, $a=\frac{\Delta p_{1}}{\Delta p_{1}+\Delta p_{2}}$
Where:
$\Delta p_{1}=$ pressure drop across the fully open valve
$\Delta p_{2}=$ pressure drop across the rest of the circuit with a full open valve

The ideal valve would give a pressure drop equal to the system pressure drop (i.e. an authority of 0.5):
if: $\Delta p_{1}=\Delta p_{2}$
$\mathrm{a}=\frac{\Delta \mathrm{p}_{1}}{\Delta \mathrm{p}_{1}-\Delta \mathrm{p}_{2}}=0.5$
In this example an authority of 0.5 would be given by a valve having a pressure drop of 55 kPa at that flow rate (point B).

The intersection of line A-A with a vertical line drawn from B lies between two diagonal lines; this means that no ideally-sized valve is available. The intersection of line A-A with the diagonal lines gives the pressure drops stated by real, rather than ideal, valves. In this case, a valve with $\mathrm{k}_{\text {vs }} 6.3$ would give a pressure drop of 90.7 kPa (point C):
hance valve autority $=\frac{90.7}{90.7+55}=0.62$
The second largest valve, with $\mathrm{k}_{\mathrm{vS}} 10$, would give a pressure drop of 36 kPa (point D):
hence value autority $=\frac{36}{36+55}=0.395$
Generally, for a 3 port application, the smaller valve would be selected (resulting in a valve authority higher than 0.5 and therefore improved control). However, this will increase the total pressure and should be checked by the system designer for compatibility with available pump heads, etc. The ideal authority is 0.5 with a preferred range of between 0.4 and 0.7 .

Design

(Design variations are possible)

VRG 2

1. Valve body
2. Valve insert
3. Valve cone
4. Valve stem
5. Moving valve seat (pressure relieved)
6. Stuffing box

Dimensions

$A M V(E) 335,435+V R G 2$

Type	DN	G ${ }^{1}$	L	H	H_{1}	L,	H_{2}	Weight
		Connection	mm					kg
VRG 2	15	1	80	29	191	128	-	0.66
	20	$11 / 4$	80	31	193	128		0.78
	25	$11 / 2$	95	32	197	151		1.07
	32	2	112	35	201	178		1.48
	40	$21 / 4$	132	45	213	201		2.60
	50	23/4	160	48	217	234		3.64
VRG 3	15	1	80	40	191	128	64	0.71
	20	$11 / 4$	80	45	193	128	69	0.90
	25	$11 / 2$	95	50	196	151	78	1.22
	32	2	112	58	201	178	91	1.82
	40	$21 / 4$	132	75	230	201	110	3.17
	50	23/4	160	83	243	234	120	5.01

${ }^{1}$) G ... external thread DIN ISO 228/01
If stem heater is used dimension H_{1} is increased for 31 mm .

Dimensions (continued)

Type	DN	$\mathbf{G}^{1)}$	\mathbf{L}	\mathbf{H}	\mathbf{H}_{1}
		Connection	$\mathbf{m m}$		
VRG 2	15	1	80	29	216
	20	$11 / 4$	80	31	218
	25	$11 / 2$	95	32	222
	32	2	112	35	226
	40	$2^{11 / 4}$	132	45	237
	50	$23 / 4$	160	48	242
VRG 3	15	1	80	40	216
	20	$11 / 4$	80	45	218
	25	$11 / 2$	95	50	222
	32	2	112	58	226
	40	$2^{11 / 4}$	132	75	255
	50	$23 / 4$	160	83	268

${ }^{1}$) G... external thread DIN ISO 228/01
If stem heater is used dimension H_{1} is increased for 5 mm .

Danfoss A/S

Climate Solutions •climatesolutions.danfoss.com •+45 $74882222 \cdot$ E-Mail: climatesolutions@danfoss.com
Any information, including, but not limited to information on selection of product, its application or use, product design, weight, dimensions, capacity or any other technical data in product manuals, atalogues descriptions, advertisements, etc. and whether made available in writing, orally, electronically, online or via download, shall be considered informative, and is only binding if and to the extent, explicit reference is made in a quotation or order confirmation. Danfoss cannot accept any responsibility for possible errors in catalogues, brochures, videos and other material Danfoss reserves the right to alter its products without notice. This also applies to products ordered but not delivered provided that such alterations can be made without changes to form, fit or function of the product.
All trademarks in this material are property of Danfoss A / S or Danfoss group companies. Danfoss and the Danfoss logo are trademarks of Danfoss A/S. All rights reserved.

